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Abstract

An efficient theoretical formalism and advanced experimental methods are presented for studying the effects of anisotropic

molecular motion and relaxation on solid-state central transition NMR spectra of half-integer quadrupole nuclei. The theoretical

formalism is based on density operator algebra and involves the stochastic Liouville–von Neumann equation. In this approach the

nuclear spin interactions are represented by the Hamiltonian while the motion is described by a discrete stochastic operator. The

nuclear spin interactions fluctuate randomly in the presence of molecular motion. These fluctuations may stimulate the relaxation of

the system and are represented by a discrete relaxation operator. This is derived from second-order perturbation theory and involves

the spectral densities of the system. Although the relaxation operator is valid only for small time intervals it may be used recursively

to obtain the density operator at any time. The spectral densities are allowed to be explicitly time dependent making the approach

valid for all motional regimes. The formalism has been applied to simulate partially relaxed central transition 17O NMR spectra of

representative model systems. The results have revealed that partially relaxed central transition lineshapes are defined not only by

the nuclear spin interactions but also by anisotropic motion and relaxation. This has formed the basis for the development of central

transition spin-echo and inversion-recovery NMR experiments for investigating molecular motion in solids. As an example we have

acquired central transition spin-echo and inversion-recovery 17O NMR spectra of polycrystalline cristobalite (SiO2) at temperatures

both below and above the a–b phase transition. It is found that the oxygen atoms exhibit slow motion in a-cristobalite. This motion

has no significant effects on the fully relaxed lineshapes but may be monitored by studying the partially relaxed spectra. The a–b
phase transition is characterized by structural and motional changes involving a slight increase in the Si–O–Si bond angle and a

substantial increase in the mobility of the oxygen atoms. The increase in the Si–O–Si angle is supported by the results of 17O and 29Si

NMR spectroscopy. The oxygen motion is shown to be orders of magnitude faster in b-cristobalite resulting in much faster re-

laxation and characteristic lineshapes. The measured oscillation frequencies are consistent with the rigid unit mode model. This

shows that solid-state NMR and lattice dynamics simulations agree and may be used in combination to provide more detailed

models of solid materials.
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1. Introduction

The importance of measuring and characterizing an-

isotropic motion in condensed matter is becoming in-

creasingly evident as more detailed models of solid

materials are being developed. The effects of molecular

motion have been observed in many technologically

important materials including organic and inorganic
polymers [1,2], crystalline and amorphous silicates and

aluminosilicates [3], inorganic glasses and melts [4,5],

modified silica surfaces [6,7], liquid crystals [8,9], and

inclusion compounds [10–12]. An important objective of

modern materials science research is to determine the

fundamental relations between molecular structure and

motion and the observable properties of solids including
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their mechanical and thermodynamic properties, electric
and magnetic characteristics, optical properties, cata-

lytic activities, and radiation sensitivity. This may

eventually form the basis for the development of new

improved materials of interest to science and industry

and make it easier to understand and predict different

natural phenomena such as magma flow and plate tec-

tonics as well as other geophysical processes that are

known to depend on molecular structure and mobility.
There are a variety of experimental and theoretical

methods available for investigating the structure of

solids among which diffraction techniques represent the

most widely used approach for studying crystalline

materials [13,14]. However, it is known that diffraction

methods and most other techniques are either insensitive

to molecular motion or provide only limited informa-

tion about the details of the system. In order to inves-
tigate anisotropic motion it is useful to implement the

technique of solid-state nuclear magnetic resonance

(NMR) spectroscopy [15,16]. The primary advantage of

this method is that it can be applied to structurally and

motionally disordered systems such as amorphous

polymers and glasses that cannot easily be investigated

by diffraction techniques. The method is highly sensitive

to the local molecular structure around the nuclei and to
structural distributions whereas diffraction techniques

depend on the existence of long-range order. This allows

a much more detailed investigation of many systems for

which there is no long-range order but where structural

or motional disorder is important for determining the

physical properties.

The most important feature of solid-state NMR is

that the spectra are defined by several different nuclear
spin interactions including the dipole, quadrupole, and

shielding interactions [15,16]. These depend on the

molecular structure and chemical bonding making the

technique useful for structural investigations. More-

over, the spectra are sensitive to time-dependent phe-

nomena such as molecular motion and relaxation and

may provide information about dynamic disorder in

condensed matter. The structural and motional NMR
parameters may be extracted by simulating the spectra

using a physical model of the nuclear spin interactions

and the motion. The structural NMR parameters may

often be correlated with coordination numbers, bond

angles, and bond lengths. Similarly, the motional NMR

parameters may be related to different intra- and in-

termolecular interactions. The usefulness of the method

has increased following recent advances in electron
structure simulations which have made it possible to

predict the structural NMR parameters for different

solid materials [17–19]. Similarly, the results of molec-

ular dynamics calculations and Monte Carlo simula-

tions may be used in conjunction with solid-state NMR

to probe the dynamic nature of condensed matter [20].

This combination of theoretical and experimental

techniques is a promising research area that may pro-
vide more detailed models of solid materials.

There is an extensive literature on the simulation of

solid-state NMR spectra for almost any nuclear spin

system and the determination of structural NMR

parameters from experimental spectra has become an

important and widely used method for investigating

condensed matter [15,16]. However, for motionally dis-

ordered systems the progress has been slower and pre-
vious investigations have almost exclusively focused on

using relatively simple nuclei such as deuterons as

probes of molecular motion. The most successful

methods for investigating anisotropic motion in solids

involve simulating the lineshapes of fully or partially

relaxed spectra. In the case of fully relaxed spectra the

lineshapes are defined by the anisotropic nuclear spin

interactions and the motion [21]. The most important
difficulty in simulating molecular motion is that it is

often possible to define several different motional mod-

els that produce similar fully relaxed lineshapes making

it difficult or impossible to interpret the spectra. In the

case of partially relaxed systems the spectra are deter-

mined not only by the anisotropic nuclear spin interac-

tions and the motion but also by the relaxation

anisotropy [22–25]. These effects combine to produce
characteristic lineshapes of partially relaxed spectra. The

additional information found in the relaxation anisot-

ropy may help in differentiating between models that

produce similar fully relaxed spectra. However, it is

important to understand that the technique has some

limitations and that there may often be several different

models for which the partially relaxed lineshapes are

indistinguishable. The most obvious advantage of
studying partially relaxed spectra is that the number of

possible models is reduced significantly. By evaluating

the models against other constraints such as molecular

geometry and symmetry it is usually possible to distin-

guish between different mechanisms and accurately

characterize the motion.

An additional advantage of studying partially relaxed

spectra is that the range over which the motional NMR
parameters may be obtained is extended significantly.

The wide range of rate constants over which lineshape

effects occur in solids is the result of the magnitude and

anisotropy of the nuclear spin interactions. However,

most investigations are limited by the requirement that

the rate constants are comparable to the width of the

spectra. If the rate constants are either much smaller or

larger than the width of the spectra the lineshapes are
either unaffected by the motion or defined by a mo-

tionally averaged nuclear spin interaction. In these cases

it is impossible to determine the rate constants from the

fully relaxed spectra. However, the nuclear spin inter-

actions fluctuate randomly as a result of molecular

motion and may stimulate the relaxation of the system

[22–25]. Because nuclear spin transitions occur at radio
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frequencies molecular motions in this frequency range
are most efficient in relaxing the system. However, there

is usually sufficient spectral density at both higher and

lower frequencies to stimulate significant relaxation.

This makes measurements of anisotropic relaxation

sensitive to both slow and fast molecular motions that

may have no easily discernible effects on the fully relaxed

spectra. Moreover, requiring the effects of the relaxation

anisotropy to be reproduced places additional con-
straints on the rate constants. These observations show

that studies of partially relaxed lineshapes are essential

for any accurate investigation of molecular motion.

There are several experimental techniques that have

proven useful for measuring anisotropic relaxation in

solids [9]. The inversion-recovery experiment is among

the most versatile methods since it may be applied to

any nuclear spin system. The fundamental principle in
this technique is to create a nonequilibrium state by

inverting the nuclear spin transitions. The state of the

nonequilibrium system following a variable relaxation

period is monitored by a pulse sequence designed to

create and detect observable magnetization. The most

elaborate investigations have involved quadrupole nu-

clei with small quadrupole interactions among which

deuterons are particularly attractive. In this case the
inversion results in a state qz of rank-one dipole align-

ment. The evolution of this state is defined by the

relaxation time Tz which involves two spectral densities

J ð2Þ1 ðx0Þ and J ð2Þ2 ð2x0Þ. The spectral densities are sensi-

tive to the details of molecular motion. In order to ob-

tain these it is useful to monitor the relaxation of a state

qz2 of rank-two quadrupole alignment. The corres-

ponding relaxation time Tz2 involves only one spectral
density J ð2Þ2 ð2x0Þ. This demonstrates that the simulta-

neous measurement of the relaxation of the rank-one

dipole and rank-two quadrupole alignments makes it

possible to extract the individual spectral densities.

In the case of half-integer quadrupole nuclei

(I ¼ 3
2
; 5
2
; 7
2
; 9
2
) it is possible to implement similar tech-

niques for studying anisotropic relaxation and motion

[26]. However, there are several difficulties involved in
the description and interpretation of relaxation and

motion of half-integer quadrupole nuclei that have not

previously been fully recognized. As discussed in this

paper the selective excitation of any half-integer

quadrupole nucleus creates not only rank-one dipole

alignment but also higher rank multipole alignments

[27–30]. The amounts of these alignments depend on

the equilibrium state of the system and the excitation
sequence. For half-integer quadrupole nuclei any se-

lective excitation pulse will transfer all odd-rank mul-

tipole alignments qz; qz3 ; . . . ; qz2I including the rank-one

dipole alignment into odd-rank multipole align-

ments and all even-rank multipole alignments qz2 ;
qz4 ; . . . ; qz2I�1 including the rank-two quadrupole align-

ment into even-rank multipole alignments. The relax-

ation of the odd-rank multipole alignments is defined
by I þ 1

2
simultaneous equations while the relaxation of

the even-rank multipole alignments is specified by a

system of I � 1
2
equations. This makes it impossible to

describe the relaxation in terms of simple exponentials

and relaxation times. However, it is important to un-

derstand that the amounts of higher rank multipole

alignments are vanishing in nonselective experiments

on nuclei with small quadrupole interactions in which
case the relaxation may be exponential. The creation of

higher rank multipole alignments makes exponential

relaxation impossible and supports the multiexponen-

tial model of relaxation. In this paper the effects of

higher rank multipole alignments are included in the

description. An advanced formalism based on density

operator algebra is developed to calculate the combined

effects of anisotropic motion and relaxation. This for-
malism involves arbitrary molecular motion and may

be applied to any nuclear spin system. The theoretical

results have formed the basis for the development of

experimental techniques to measure anisotropic relax-

ation and motion of half-integer quadrupole nuclei.

These methods are based on selective inversion and

subsequent observation of central transition spectra.

In order to demonstrate the usefulness of the theo-
retical and experimental methods introduced in this

paper we have applied central transition spin-echo and

inversion-recovery 17O NMR spectroscopy to study the

oxygen disorder in the silica (SiO2) polymorph cristo-

balite. This system is interesting in the context of an-

isotropic relaxation because it is difficult to obtain a

consistent description of the oxygen motion from the

fully relaxed lineshapes. The most important difficulty
is that the oxygen motion is either slow or fast de-

pending on the temperature. It is shown that although

the motion has no substantial effects on the fully re-

laxed lineshapes it produces a characteristic relaxation

anisotropy that makes it possible to determine the

structural and motional NMR parameters. For com-

pleteness we have obtained central transition spin-echo

and inversion-recovery 17O NMR spectra of cristobalite
at temperatures both below and above the a–b phase

transition. It is found that the oxygen motion is slow in

a-cristobalite and depends only weakly on the temper-

ature. The results represent the first direct experimental

evidence of dynamic disorder in a-cristobalite. The

oxygen motion becomes faster by orders of magnitude

at the a–b phase transition and results in significant

averaging of the spectra and substantial changes in the
relaxation characteristics. The observations are consis-

tent with previous results and provide compelling evi-

dence that b-cristobalite is dynamically disordered. The

structure of a-cristobalite is probed by 17O and 29Si

NMR spectroscopy and shown to be almost invariant

as a function of temperature. However, at the a–b
phase transition the system is found to be subject to
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small structural modifications involving an increase in
the Si–O–Si angle.

2. Theory

2.1. Density operator description of molecular motion and

nuclear spin relaxation

2.1.1. Time evolution of nonequilibrium systems

The most fundamental description of the state of an

ensemble of nuclear spin systems is obtained by intro-

ducing the density operator rðtÞ that includes all possi-
ble coherences and alignments [31]. In the case of

nonequilibrium systems the deviation from thermal

equilibrium is defined by the deviation density operator

qðtÞ ¼ rðtÞ � r0 where r0 is the equilibrium density op-
erator. In the corresponding Zeeman interaction repre-

sentation [15] the deviation density operator becomes

~qqðtÞ ¼ F ðt0; tÞyqðtÞF ðt0; tÞ; ð1Þ
with the propagator

F ðt0; tÞ ¼ expð�iH0½t � t0�Þ ð2Þ
defined by the Zeeman Hamiltonian H0 ¼ �x0Iz where
x0 ¼ cB0 is the Larmor frequency for a nucleus with
gyromagnetic ratio c subject to a magnetic flux density

B0. The time evolution of the deviation density operator

is described by the stochastic Liouville–von Neumann

equation [32,33]

o

ot
j~qqðtÞi ¼ ~AAðtÞj~qqðtÞi; ð3Þ

which includes the coefficient operator

~AAðtÞ ¼ �iAdð ~HHðtÞÞ þ DðtÞ þ N; ð4Þ
where

~HHðtÞ ¼ F ðt0; tÞyHðtÞF ðt0; tÞ � iF ðt0; tÞy
o

ot
F ðt0; tÞ ð5Þ

represents the Zeeman interaction Hamiltonian, DðtÞ the
relaxation operator, and N the stochastic operator. The

Hamiltonian defines the anisotropic nuclear spin inter-

actions while the stochastic operator specifies the

motion of the system. The motion induces random

fluctuations in the anisotropic nuclear spin interactions.

These fluctuations stimulate the relaxation of the system

[22–25] and are represented by the relaxation operator.

The motion is assumed to be described by a stochastic
process fnðtÞ j tP t0g where the stochastic variable nðtÞ
defines the motional state of the ensemble. In the case of a

discrete stochastic process the values of nðtÞ are given by

fnn jn ¼ 1; . . . ;Ng where N is the number of states. It is

useful to describe the properties of any nuclear spin en-

semble by introducing the Lie group SUð2I þ 1Þ and its

direct products [34]. For an ensemble subject to a discrete

stochastic process the corresponding group generators

are represented by fImðnnÞ jm ¼ 1; . . . ;M ; n ¼ 1; . . . ;Ng
where M is the number of coherences and alignments

[33]. The group generators transform according to the

adjoint representation

AdðIkðnrÞÞjIlðnsÞi ¼ j½IkðnrÞ; IlðnsÞ�i

¼ drs
XM
m¼1

cmkljImðnrÞi; ð6Þ

where cmkl are the structure constants. The orthogonality

and completeness of the group generators imply that the

Hamiltonian and the deviation density operator may be
expanded as

~HHðtÞ ¼
XM
m¼1

~HHmðtÞIm ¼
XM
m¼1

XN
n¼1

~HHmðnn; tÞImðnnÞ; ð7Þ

~qqðtÞ ¼
XM
m¼1

~qqmðtÞIm ¼
XM
m¼1

XN
n¼1

~qqmðnn; tÞImðnnÞ; ð8Þ

where Im ¼
PN

n¼1 ImðnnÞ and the expansion coefficients

~HHmðtÞ ¼
hImj ~HHðtÞi
hImjImi

; ~HHmðnn; tÞ ¼
hImðnnÞj ~HHðtÞi
hImðnnÞjImðnnÞi

; ð9Þ

~qqmðtÞ ¼
hImj~qqðtÞi
hImjImi

; ~qqmðnn; tÞ ¼
hImðnnÞj~qqðtÞi
hImðnnÞjImðnnÞi

; ð10Þ

define the components of the Hamiltonian and the de-

viation density operator. This representation is useful

because the components of the deviation density

operator define all possible deviation coherences and

alignments.
Following the above results the stochastic Liouville–

von Neumann equation (Eq. (3)) is developed by

inserting the expansions of the Hamiltonian (Eq. (7))

and the deviation density operator (Eq. (8)) to obtain

the linear homogeneous system of coupled first-order

differential equations

o

ot
~qqkðnr; tÞ ¼

XM
l¼1

XN
s¼1

~aaklðnr; ns; tÞ~qqlðns; tÞ; ð11Þ

where

~aaklðnr; ns; tÞ ¼
hIkðnrÞj ~AAðtÞjIlðnsÞi
IkðnrÞjIkðnrÞh i ð12Þ

are the elements of the coefficient matrix. This system is

usually solved using a numerical integration method

[35]. The most important complication is that the

equations may be highly stiff making the numerical so-

lution difficult. The stiffness implies that the integration

method must have stiff stability and accuracy charac-
teristics [36]. The elements of the coefficient matrix are

developed by inserting the expression of the coefficient

operator (Eq. (4)) to obtain
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~aaklðnr; ns; tÞ ¼ �i
hIkðnrÞjAdð ~HHðtÞÞjIlðnsÞi

IkðnrÞjIkðnrÞh i

þ IkðnrÞjDðtÞjIlðnsÞh i
IkðnrÞjIkðnrÞh i þ IkðnrÞjNjIlðnsÞh i

IkðnrÞjIkðnrÞh i ;

ð13Þ

which when combined with

hIkðnrÞjAdð ~HHðtÞÞjIlðnsÞi
IkðnrÞjIkðnrÞh i ¼ drs

XM
m¼1

~HHmðnr; tÞckml; ð14Þ

IkðnrÞjDðtÞjIlðnsÞh i
IkðnrÞjIkðnrÞh i ¼ drsDklðnr; tÞ; ð15Þ

IkðnrÞjNjIlðnsÞh i
IkðnrÞjIkðnrÞh i ¼ dklNðnr; nsÞ; ð16Þ

leads to the result

~aaklðnr; ns; tÞ ¼ �idrs
XM
m¼1

~HHmðnr; tÞckml þ drsDklðnr; tÞ

þ dklNðnr; nsÞ; ð17Þ

which specify the coefficient matrix in terms of the ele-

ments ~HHmðnr; tÞ of the interaction Hamiltonian, the ele-

ments Dklðnr; tÞ of the relaxation operator, and the

elements Nðnr; nsÞ of the stochastic operator. The form
of the stochastic operator depends on the details of the

motion. In those cases where the motion may be de-

scribed by a discrete Markov process [24,33] the matrix

elements are

Nðnm; nnÞ ¼ knm; ð18Þ

Nðnm; nmÞ ¼ �
XN
n¼1

½1� dmn�kmn; ð19Þ

where kmn are the rate constants. These elements are

related by microscopic reversibility

Nðnm; nnÞP ðnnÞ ¼ Nðnn; nmÞP ðnmÞ; ð20Þ
where P ðnmÞ are the equilibrium probabilities of the

motional states. This demonstrates that given the equi-
librium probabilities it is sufficient to define only one

triangular part of the stochastic matrix.

2.1.2. Matrix representation of the relaxation operator

In the presence of molecular motion the interaction

Hamiltonian becomes a random operator that may

stimulate the relaxation of the nuclear spin ensemble. In

the following the description of the relaxation is based
on second-order perturbation theory [24,25] with the

relaxation operator

DðtÞ ¼ �
Z t�t0

0

hAdð ~HHðtÞÞAdð ~HHðt � sÞÞids; ð21Þ

where hAdð ~HHðtÞÞAdð ~HHðt � sÞÞi is the correlation func-

tion of the adjoint Hamiltonian. This equation may be

transcribed by inserting the expansion of the Hamilto-
nian (Eq. (7)) to obtain

DðtÞ ¼
XN
r¼1

Dðnr; tÞ; ð22Þ

where

Dðnr; tÞ ¼ �
XM
q1;q2¼1

AdðIq1ðnrÞÞAdðIq2ðnrÞÞ

�
Z t�t0

0

h ~HHq1ðtÞ ~HHq2ðt � sÞids ð23Þ

are the relaxation operators for the different motional

states. The corresponding Hamiltonians are

Hðnr; tÞ ¼ H0ðnrÞ þ H1ðnr; tÞ

¼ H0ðnrÞ þ
XM
p¼1

H1pðnr; tÞIpðnrÞ; ð24Þ

which in the interaction representation (Eq. (5)) become

~HHðnr; tÞ ¼ ~HH1ðnr; tÞ

¼
XM
p¼1

H1pðnr; tÞF ðt0; tÞyIpðnrÞF ðt0; tÞ; ð25Þ

where

F ðt0; tÞyIpðnrÞF ðt0; tÞ ¼
XM
q¼1

fpqðt0; tÞIqðnrÞ

¼
XM
q¼1

X1
m¼�1

f ðmÞ
pq

� expðimx0½t � t0�ÞIqðnrÞ ð26Þ

define the transformation of the individual group gen-

erators. In this equation the transfer functions have been

expanded in the Fourier series

fpqðt0; tÞ ¼
X1
m¼�1

f ðmÞ
pq expðimx0½t � t0�Þ; ð27Þ

where f ðmÞ
pq are time independent expansion coefficients.

From these results it becomes evident that

~HHðnr; tÞ ¼
XM
p¼1

XM
q¼1

X1
m¼�1

H1pðnr; tÞf ðmÞ
pq

expðimx0½t � t0�ÞIqðnrÞ

¼
XM
q¼1

~HHqðnr; tÞIqðnrÞ; ð28Þ

where

~HHqðnr; tÞ ¼
XM
p¼1

X1
m¼�1

H1pðnr; tÞf ðmÞ
pq expðimx0½t � t0�Þ

ð29Þ
are the individual components. The above equations

may be combined to obtain
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Dðnr; tÞ ¼ �
XM
p1;p2¼1

XM
q1;q2¼1

X1
m1;m2¼�1

AdðIq1ðnrÞÞ

� AdðIq2ðnrÞÞf ðm1Þ
p1q1

f ðm2Þ
p2q2

� exp i½m1ð þ m2�x0½t � t0�Þjp1p2ð�m2x0; tÞ;
ð30Þ

where the spectral densities

jp1p2ðx; tÞ ¼
Z t�t0

0

gp1p2ðsÞ expðixsÞds ð31Þ

are defined by the correlation functions gp1p2ðsÞ ¼
hH1p1ðtÞH1p2ðt � sÞi. The results may be simplified by

restricting to secular terms in which case

Dðnr; tÞ ¼ �
XM
p1;p2¼1

XM
q1;q2¼1

X1
m¼�1

AdðIq1ðnrÞÞ

� AdðIq2ðnrÞÞf ðmÞ
p1q1
f ð�mÞ
p2q2

jp1p2ðmx0; tÞ ð32Þ

and by ignoring small frequency shifts one finds that

Dðnr; tÞ ¼ � 1

2

XM
p1;p2¼1

XM
q1;q2¼1

X1
m¼�1

AdðIq1ðnrÞÞ

� AdðIq2ðnrÞÞf ðmÞ
p1q1
f ð�mÞ
p2q2

Jp1p2ðmx0; tÞ; ð33Þ

where the spectral densities

Jp1p2ðx; tÞ ¼ 2

Z t�t0

0

gp1p2ðsÞ cosðxsÞds ð34Þ

are real and even functions. The matrix elements of the

relaxation operator (Eq. (15)) are

Dklðnr; tÞ ¼ � 1

2

XM
p1;p2¼1

XM
q1;q2¼1

X1
m¼�1

�
IkðnrÞjAdðIq1ðnrÞÞAdðIq2ðnrÞÞjIlðnrÞ
� �

IkðnrÞjIkðnrÞh i
� f ðmÞ

p1q1
f ð�mÞ
p2q2

Jp1p2ðmx0; tÞ; ð35Þ

which may be rewritten to obtain

Dklðnr; tÞ ¼ � 1

2

XM
p1;p2¼1

XM
q1;q2¼1

XM
q3¼1

X1
m¼�1

� ckq1q3c
q3
q2l
f ðmÞ
p1q1
f ð�mÞ
p2q2

Jp1p2ðmx0; tÞ; ð36Þ

where we have used the transformation properties (Eq.

(6)) of the group generators. Although this formalism is

valid only for small time intervals where

Dklðnr; tÞ½t � t0� � 1 it may be implemented recursively

to obtain the deviation density operator at any time.

2.1.3. Evaluation of correlation functions

The elements of the relaxation operator are specified

by the spectral densities of the fluctuating magnetic in-

teractions generated by the motion. In the previous sec-

tion it was shown that the spectral densities are defined

by the corresponding correlation functions. In order to

determine the form of these we consider the Hamiltonian
elements H1pðtÞ ¼ H1pðnðtÞ; tÞ where the time dependence

has been separated into a contribution from the sto-

chastic process fnðtÞjtP t0g and a contribution from any

coherent interaction. The correlation functions

gp1p1ðsÞ ¼ hH1p1ðtÞH1p2ðt þ sÞi are given by [22–25]

H1p1ðtÞH1p2ðt
�

þ sÞ
�
¼

XN
k¼1

XN
l¼1

H1p1ðnl; tÞH1p2ðnk; t þ sÞ�

� P ðnlÞP ðnk; t þ sjnl; tÞ; ð37Þ

where P ðnk; t þ sjnl; tÞ is the conditional probability that

the stochastic variable nðtÞ has the value nk at time t þ s
given it had the value nl at time t. It is evident that

gp1p2ðsÞ ¼ gp1p2ð�sÞ ¼ gp2p1ðsÞ
�

define the fundamental

symmetry of the correlation functions. In the case of a
discrete Markov process the conditional probabilities

obey the equation

o

os
PðsÞ ¼ NPðsÞ; ð38Þ

where the matrices PðsÞ ¼ fPðnk; t þ sjnl; tg and N ¼
fNðnk; nlÞg. The solution is expressed by

PðsÞ ¼ expðNsÞ; ð39Þ
which involves an explicit matrix exponential. The sto-

chastic matrix may be symmetrized by the transforma-
tion S�1NS where the diagonal matrix S ¼ fSklg ¼
fP ðnkÞ1=2dklg is defined by the equilibrium probabilities

[21]. The symmetrized system satisfies the equation

T�1S�1NST ¼ K where T ¼ fTklg is the eigenvector

matrix and K ¼ fkkdklg the eigenvalue matrix. These

results lead to

P ðnk; t þ sjnl; tÞ ¼
XN
m¼1

SkkS�1
ll TkmTlm expðkmsÞ; ð40Þ

which allows the correlation functions to be rewritten in

the form

H1p1ðtÞH1p2ðt
�

þ sÞ
�
¼

XN
k¼1

XN
l¼1

XN
m¼1

H1p1ðnl; tÞ

� H1p2ðnk; t þ sÞ�bðmÞkl expðkmsÞ;
ð41Þ

where bðmÞkl ¼ SkkSllTkmTlm are time independent coeffi-
cients. It is straightforward to show that the eigenvalues

are real and negative for the stochastic matrix. This

implies that the correlation functions are a weighed sum

of decaying exponentials. The corresponding spectral

densities are

Jp1p2ðx; tÞ ¼ 2
XN
k¼1

XN
l¼1

XN
m¼1

Z t�t0

0

H1p1ðnl; tÞ

� H1p2ðnk; t þ sÞ�bðmÞkl expðkmsÞ cosðxsÞds;

ð42Þ
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where any time dependence of the elements of the
Hamiltonian must be considered explicitly. In the case

of fast motion the correlation times become very small

allowing the upper limit of the integral to be extended to

infinity [24,25]. This makes the spectral densities become

time independent and simplifies the description of the

relaxation process.

2.1.4. Representation by irreducible tensor operators

The relaxation formalism developed above may be

implemented for any set of group generators and any

nuclear spin interaction. The group generators are

selected primarily on the basis of the symmetry and

selectivity of the coherence transfer pathways. For

nonselective and nonsymmetric coherence transfer

pathways the description is simplified by implementing

irreducible SUð2Þ tensor operators for SUð2I þ 1Þ [34].
In this case the interaction Hamiltonians may be

expressed in the form

H1ðnr; tÞ ¼
X
k

X
m

ð�1ÞmSðI ; kÞ2AðkÞ
�mðnr; tÞT ðkÞ

m ðnrÞ; ð43Þ

where the normalization factors

SðI ; kÞ ¼ k!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12½2I þ k þ 1�!½2I � 1�!

½2I � k�!½2k�!½2I þ 2�!½2k þ 1�2k

s
ð44Þ

have been chosen so that the norm is independent of the

rank k and identical to

T ðk1Þ
m1

ðnrÞjT ðk2Þ
m2

ðnrÞ
D E

¼ 1
3
I ½I þ 1�½2I þ 1�dk1k2dm1m2

; ð45Þ

which only depends on the spin quantum number I. This

normalization is particularly attractive because it guar-
antees that all coherence transfer functions and spectral

densities exhibit maximum symmetry while retaining the

transformation properties of the tensor operators. The

interaction representation is readily obtained by imple-

menting the equation

F ðt0; tÞyT ðkÞ
m ðnrÞF ðt0; tÞ ¼ expð�imx0½t � t0�ÞT ðkÞ

m ðnrÞ;
ð46Þ

which leads to the relaxation operators

Dðnr; tÞ ¼ � 1

2

X
k

X
m

SðI ; kÞ4

� AdðT ðkÞ
m ðnrÞÞAdðT ðkÞ

�mðnrÞÞJ ðkÞm ðmx0; tÞ; ð47Þ

where the spectral densities

J ðkÞm ðx; tÞ ¼ 2

Z t�t0

0

gðkÞm ðsÞ cosðxsÞds ð48Þ

involve the correlation functions gðkÞm ðsÞ ¼ hAðkÞ
�mðtÞ

AðkÞ
m ðt � sÞi. The matrix elements of the relaxation

operator are

Dðk1k3Þ
m1m3

ðnr; tÞ

¼ � 1

2

X
k2

X
m2

SðI ; k2Þ4

�
hT ðk1Þ

m1
ðnrÞjAdðT ðk2Þ

m2
ðnrÞÞAdðT ðk2Þ

�m2
ðnrÞÞjT ðk3Þ

m3
ðnrÞi

hT ðk1Þ
m1 ðnrÞjT ðk1Þ

m1 ðnrÞi
� J ðk2Þm2

ðm2x0; tÞ; ð49Þ

which define a system of simultaneous equations
among the alignments and coherences. In the case of

nonselective and symmetric coherence transfer path-

ways it is more convenient to use the irreducible

cartesian SUð2Þ tensor operators for SUð2I þ 1Þ [34].

These involve symmetric and antisymmetric combina-

tions of irreducible SUð2Þ tensor operators and are

defined by

IðkÞðnrÞ ¼
1ffiffiffi
2

p T ðkÞ
�mðnrÞ


�
þ ð � 1ÞmT ðkÞ

m ðnrÞ
�
;

T ðkÞ
0 ðnrÞ;

iffiffiffi
2

p T ðkÞ
m ðnrÞ



� ð � 1ÞmT ðkÞ

�mðnrÞ
�


; ð50Þ

where the individual elements are Hermitian. The in-

teraction Hamiltonians may be expressed in terms of

irreducible cartesian SUð2Þ tensor operators by the

equation

H1ðnr; tÞ ¼
X
k

X
m

SðI ; kÞ2AðkÞ
m ðnr; tÞI ðkÞm ðnrÞ; ð51Þ

where the individual components are identified by the

rank and corresponding cartesian harmonic homoge-
neous polynomial. An important advantage of these

representations is that the form and transformation

properties of the Hamiltonians are described more eas-

ily. This is useful in NMR spectroscopy where the

Hamiltonians are often transformed between different

coordinate systems.

2.1.5. The nuclear spin Hamiltonian

The interaction of any single nuclear spin system in-

volves several different contributions and is represented

by the Hamiltonian

H1ðnr; tÞ ¼ Hrfðnr; tÞ þ HSðnr; tÞ þ HQðnr; tÞ; ð52Þ
where Hrfðnr; tÞ defines the interaction with external

radio frequency (rf) fields, HSðnr; tÞ represents the

shielding interaction, and HQðnr; tÞ specifies the quad-

rupole interaction. For most quadrupole nuclei the

shielding and quadrupole interactions are substantial

and must be considered during periods of rf irradiation.

The shielding and quadrupole interactions influence the

coherence transfer functions and may produce signifi-
cant intensity and phase distortions in the calculated

lineshapes. These effects are especially pronounced in

selective experiments using weak rf irradiation and long

rf pulses.
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The rf field Hamiltonian describes the coupling be-
tween the nuclear dipole moment and any external os-

cillating magnetic flux density. The interaction is

conveniently expressed in terms of irreducible cartesian

tensor operators according to [15,34]

Hrfðnr; tÞ ¼ hAð1Þ
rf ðtÞ j I

ð1Þ
rf ðnrÞi; ð53Þ

where A
ð1Þ
rf ðtÞ ¼ �2cBrfðtÞ and I

ð1Þ
rf ðnrÞ ¼ Ið1ÞðnrÞ are the

first-rank irreducible cartesian rf field tensors for a

nucleus with gyromagnetic ratio c. The magnetic rf

flux density BrfðtÞ ¼ �Brf cosðxtÞerf is defined by its

magnitude Brf , angular frequency x, and direction erf ¼
fcosðuÞ; sinðuÞ; 0g where u specifies the phase of the rf

field. In the Zeeman interaction representation the first-

order average rf field Hamiltonian is

~HH ð1Þ
rf ðnrÞ ¼ xrf IxðnrÞ cosðuÞ



þ IyðnrÞ sinðuÞ

�
; ð54Þ

where xrf ¼ cBrf is the angular rf field strength. Because

of its relatively small magnitude the rf field Hamiltonian

must usually be combined with the shielding and

quadrupole interactions to accurately represent the ef-
fects of rf irradiation on both fully and partially relaxed

lineshapes.

The shielding Hamiltonian describes the electron

modulated interaction between the nuclear dipole mo-

ment and the external magnetic flux density. This effect

depends on the electronic state and may be used to

obtain structural information about the system. The

shielding Hamiltonian is given by [15,34]

HSðnr; tÞ ¼ SðI ; 1Þ2 A
ð1Þ
S ðnr; tÞ

��� Ið1ÞS ðnrÞ
D E

þ SðI ; 2Þ2 A
ð2Þ
S ðnr; tÞ

��� Ið2ÞS ðnrÞ
D E

; ð55Þ

where the first-rank irreducible cartesian shielding ten-

sors

A
ð1Þ
S ðnr; tÞ ¼ AS

x ðnr; tÞ;AS
z ðnr; tÞ;AS

y ðnr; tÞ
n o

; ð56Þ

I
ð1Þ
S ðnrÞ ¼ ISx ðnrÞ; ISz ðnrÞ; ISy ðnrÞ

n o
; ð57Þ

and the second-rank irreducible cartesian shielding

tensors

A
ð2Þ
S ðnr; tÞ ¼ AS

x2�y2ðnr; tÞ;AS
xzðnr; tÞ;AS

z2ðnr; tÞ;
n
AS
yzðnr; tÞ;AS

xyðnr; tÞ
o
; ð58Þ

I
ð2Þ
S ðnrÞ ¼ ISx2�y2ðnrÞ; ISxzðnrÞ; ISz2ðnrÞ; ISyzðnrÞ; ISxyðnrÞ

n o
;

ð59Þ
are defined in Tables 1 and 2 in terms of the cartesian

tensor components. For a nonrotating sample the irre-

ducible cartesian shielding tensors may be obtained from

hAð1Þ
S ðnrÞj ¼ hað1ÞS ðnrÞjCð1ÞðX1ðnrÞÞCð1ÞðX2ðnrÞÞCð1ÞðX3Þ;

ð60Þ

hAð2Þ
S ðnrÞj ¼ hað2ÞS ðnrÞjCð2ÞðX1ðnrÞÞCð2ÞðX2ðnrÞÞCð2ÞðX3Þ;

ð61Þ
where Cð1ÞðXÞ and Cð2ÞðXÞ define the first- and second-

rank irreducible cartesian representation matrices [34].

The transformation from the principal axis system of the

shielding tensor to the principal axis system of the

Table 1

Components of the first-rank irreducible cartesian shielding tensor

AS
x ðnr; tÞ ¼

iffiffiffi
2

p
SðI; 1Þ

½Szyðnr; tÞ � Syzðnr; tÞ�

AS
z ðnr; tÞ ¼

iffiffiffi
2

p
SðI; 1Þ

½Syxðnr; tÞ � Sxyðnr; tÞ�

AS
y ðnr; tÞ ¼

iffiffiffi
2

p
SðI; 1Þ

½Sxzðnr; tÞ � Szxðnr; tÞ�

ISx ðnrÞ ¼
icffiffiffi

2
p
SðI ; 1Þ

½IzðnrÞB0y � IyðnrÞB0z�

ISz ðnrÞ ¼
icffiffiffi

2
p
SðI ; 1Þ

½IyðnrÞB0x � IxðnrÞB0y �

ISy ðnrÞ ¼
icffiffiffi

2
p
SðI ; 1Þ

½IxðnrÞB0z � IzðnrÞB0x�

Table 2

Components of the second-rank irreducible cartesian shielding tensor

AS
x2�y2 ðnr; tÞ ¼

1ffiffiffi
2

p
SðI; 2Þ

½Sxxðnr; tÞ � Syyðnr; tÞ�

AS
xzðnr; tÞ ¼

1ffiffiffi
2

p
SðI; 2Þ

½Sxzðnr; tÞ þ Szxðnr; tÞ�

AS
z2 ðnr; tÞ ¼

1ffiffiffi
6

p
SðI; 2Þ

½2Szzðnr; tÞ � Sxxðnr; tÞ � Syyðnr; tÞ�

AS
yzðnr; tÞ ¼

1ffiffiffi
2

p
SðI; 2Þ

½Syzðnr; tÞ þ Szyðnr; tÞ�

AS
xyðnr; tÞ ¼ � 1ffiffiffi

2
p
SðI; 2Þ

½Sxyðnr; tÞ þ Syxðnr; tÞ�

ISx2�y2 ðnrÞ ¼
cffiffiffi

2
p
SðI; 2Þ

½IxðnrÞB0x � IyðnrÞB0y �

ISxzðnrÞ ¼
cffiffiffi

2
p
SðI ; 2Þ

½IxðnrÞB0z þ IzðnrÞB0x�

ISz2 ðnrÞ ¼
cffiffiffi

6
p
SðI ; 2Þ

½2IzðnrÞB0z � IxðnrÞB0x � IyðnrÞB0y �

ISyzðnrÞ ¼
cffiffiffi

2
p
SðI; 2Þ

½IyðnrÞB0z þ IzðnrÞB0y �

ISxyðnrÞ ¼ � cffiffiffi
2

p
SðI ; 2Þ

½IxðnrÞB0y þ IyðnrÞB0x�
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quadrupole tensor is specified by the set of Euler angles
X1ðnrÞ whereas X2ðnrÞ defines the relative orientation of

the principal axis system of the quadrupole tensor and

the crystallite fixed axis system. The set X3 specifies the

transformation from the crystallite to laboratory fixed

axis system. In the principal axis system the irreducible

cartesian shielding tensors are [34]

a
ð1Þ
S ðnrÞ ¼

i
ffiffiffi
2

p

SðI ; 1Þ

n
� KS

yzðnrÞ;� KS
xyðnrÞ;KS

xzðnrÞ
o
; ð62Þ

a
ð2Þ
S ðnrÞ ¼

CSðnrÞffiffiffi
2

p
SðI ; 2Þ

n
� gSðnrÞ; 0;

ffiffiffi
3

p
; 0; 0

o
; ð63Þ

where the shielding constant CSðnrÞ and asymmetry

parameter gSðnrÞ are defined by

CSðnrÞ ¼ KS
zzðnrÞ � SisoðnrÞ; ð64Þ

gSðnrÞ ¼
KS
yyðnrÞ � KS

xxðnrÞ
KS
zzðnrÞ � SisoðnrÞ

; ð65Þ

with the principal components KS
zzðnrÞ > KS

yyðnrÞP
KS
xxðnrÞ or KS

zzðnrÞ < KS
yyðnrÞ6KS

xxðnrÞ of the shielding
tensor and the isotropic shielding SisoðnrÞ ¼ 1

3
½KS

xxðnrÞþ
KS
yyðnrÞ þ KS

zzðnrÞ�. The first-order average shielding

Hamiltonian is defined in the Zeeman interaction rep-

resentation by [34,37]

~HH ð1Þ
S ðnr; tÞ ¼ SðI ; 2Þ

ffiffiffi
2

3

r
x0AS

z2ðnr; tÞ
"

þ xisoðnrÞ
#
IzðnrÞ;

ð66Þ

where xisoðnrÞ ¼ x0SisoðnrÞ is the isotropic shielding fre-

quency. This Hamiltonian is sufficient to represent small

or moderate shielding effects on fully relaxed lineshapes.

The quadrupole Hamiltonian specifies the interaction

between the electric field gradient and the quadrupole
moment of the nuclei. The electric field gradient is sen-

sitive to the electronic state making the quadrupole in-

teraction important for structural investigations. The

interaction is described by the quadrupole Hamiltonian

[15,34]

HQðnr; tÞ ¼ SðI ; 2Þ2hAð2Þ
Q ðnr; tÞ j Ið2ÞQ ðnrÞi; ð67Þ

where the components of the second-rank irreducible

cartesian quadrupole tensors

A
ð2Þ
Q ðnr; tÞ ¼ AQ

x2�y2ðnr; tÞ;A
Q
xzðnr; tÞ;A

Q

z2ðnr; tÞ;
n
AQ
yzðnr; tÞ;AQ

xyðnr; tÞ
o

ð68Þ

and I
ð2Þ
Q ðnrÞ ¼ Ið2ÞðnrÞ are given in Table 3 in terms of the

corresponding cartesian tensor elements. For a non-
rotating sample the second-rank irreducible cartesian

quadrupole tensor is obtained from

hAð2Þ
Q ðnrÞj ¼ hað2ÞQ ðnrÞjCð2ÞðX2ðnrÞÞCð2ÞðX3Þ; ð69Þ

where the principal second-rank irreducible cartesian

quadrupole tensor [34]

a
ð2Þ
Q ðnrÞ ¼

CQðnrÞ
2

ffiffiffi
2

p
I ½2I � 1�SðI ; 2Þ

f�gQðnrÞ; 0;
ffiffiffi
3

p
; 0; 0g

ð70Þ

involves the quadrupole coupling constant CQðnrÞ and

asymmetry parameter gQðnrÞ defined by

CQðnrÞ ¼ 2I ½2I � 1�KQ
zzðnrÞ; ð71Þ

gQðnrÞ ¼
KQ
yyðnrÞ � KQ

xxðnrÞ
KQ
zzðnrÞ

; ð72Þ

where KQ
zzðnrÞ > KQ

yyðnrÞP KQ
xxðnrÞ or KQ

zzðnrÞ < KQ
yyðnrÞ6

KQ
xxðnrÞ are the principal components of the quadrupole

tensor. In the Zeeman interaction representation the

first- and second-order average quadrupole Hamilto-

nians are given by [34,37]

~HH ð1Þ
Q ðnr; tÞ ¼ SðI ; 2Þ2AQ

z2ðnr; tÞIz2ðnrÞ; ð73Þ

Table 3

Components of the second-rank irreducible cartesian quadrupole

tensor

AQ

x2�y2 ðnr; tÞ ¼
1ffiffiffi

2
p
SðI; 2Þ

½Qxxðnr; tÞ � Qyyðnr; tÞ�

AQ
xzðnr; tÞ ¼

1ffiffiffi
2

p
SðI; 2Þ

½Qxzðnr; tÞ þ Qzxðnr; tÞ�

AQ

z2 ðnr; tÞ ¼
ffiffiffi
3

p
ffiffiffi
2

p
SðI; 2Þ

Qzzðnr; tÞ

AQ
yzðnr; tÞ ¼

1ffiffiffi
2

p
SðI; 2Þ

½Qyzðnr; tÞ þ Qzyðnr; tÞ�

AQ
xyðnr; tÞ ¼ � 1ffiffiffi

2
p
SðI; 2Þ

½Qxyðnr; tÞ þ Qyxðnr; tÞ�

IQx2�y2 ðnrÞ ¼
1ffiffiffi

2
p
SðI; 2Þ

½IxðnrÞIxðnrÞ � IyðnrÞIyðnrÞ�

IQxzðnrÞ ¼
1ffiffiffi

2
p
SðI ; 2Þ

½IxðnrÞIzðnrÞ þ IzðnrÞIxðnrÞ�

IQz2 ðnrÞ ¼
1ffiffiffi

6
p
SðI ; 2Þ

½2IzðnrÞIzðnrÞ � IxðnrÞIxðxirÞ � IyðnrÞIyðnrÞ�

IQyz ðnrÞ ¼
1ffiffiffi

2
p
SðI ; 2Þ

½IyðnrÞIzðnrÞ þ IzðnrÞIyðnrÞ�

IQxyðnrÞ ¼ � 1ffiffiffi
2

p
SðI; 2Þ

½IxðnrÞIyðnrÞ þ IyðnrÞIxðnrÞ�
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~HH ð2Þ
Q ðnr; tÞ ¼

�iSðI ; 2Þ4

4x0

X2I
k¼1

AQ

x2�y2ðnr; tÞ
2

hh

þ AQ
xyðnr; tÞ

2
i
cz

k

x2�y2;xy þ 2 AQ
xzðnr; tÞ

2
h

þ AQ
yzðnr; tÞ

2
i
cz

k

yz;xz

i
Izk ðnrÞ; ð74Þ

where the nondiagonal elements of the second-order
average quadrupole interaction have been ignored for

simplicity. These Hamiltonians account for most quad-

rupole effects on fully relaxed spectra.

2.2. Simulation of central transition inversion-recovery

spectra

2.2.1. Relaxation of spin I ¼ 3
2
multipole alignments

In order to obtain complementary information about

molecular motion in solids it is useful to study the re-

laxation of the nuclear spin multipole alignments. For

any nuclear spin there are 2I multipole alignments de-

fining the polarization of the system. In the case of half-

integer quadrupole nuclei these may be classified into

I þ 1
2
odd-rank multipole alignments qz; qz3 ; . . . ; qz2I in-

cluding the rank-one dipole alignment and I � 1
2
even-

rank multipole alignments qz2 ; qz4 ; . . . ; qz2I�1 including

the rank-two quadrupole alignment. The most impor-

tant interactions for half-integer quadrupole nuclei are

usually the quadrupole and shielding interactions. These

fluctuate randomly in the presence of molecular motion

and may stimulate the relaxation of the system [24,25].

The relaxation of the rank-one dipole and rank-three

octupole alignments is described for spin I ¼ 3
2
nuclei by

the system

o

ot
~qqzðnr; tÞ
~qqz3ðnr; tÞ

� �
¼ Dz;zðnr; tÞ Dz;z3ðnr; tÞ

Dz3;zðnr; tÞ Dz3;z3ðnr; tÞ

� �
~qqzðnr; tÞ
~qqz3ðnr; tÞ

� �
;

ð75Þ

while the relaxation of the rank-two quadrupole align-

ment obeys the equation

o

ot
~qqz2ðnr; tÞ ¼ Dz2;z2ðnr; tÞ~qqz2ðnr; tÞ; ð76Þ

where the elements Dmnðnr; tÞ ¼ DQ
mnðnr; tÞ þ DS

mnðnr; tÞ of

the relaxation operator are listed in Tables 4 and 5 in

terms of the corresponding spectral densities. The

equilibrium state of any nucleus at high fields is

dominated by the rank-one dipole alignment. This

state is transferred by any selective inversion pulse into
rank-one dipole and rank-three octupole alignments.

These odd-rank multipole alignments evolve simulta-

neously according to the above equations implying

that the relaxation measured in inversion-recovery

experiments cannot be exponential. This result has

largely been ignored in the literature where most

investigations have focused on systems with vanishing

rank-three octupole alignments. These include solids
with small quadrupole interactions and isotropic liq-

uids and solutions [22]. However, the equations reveal

that the relaxation of the rank-two quadrupole align-

ment may be exponential in the fast motion regime.

It is difficult to excite this state in selective experiments

and the relaxation of the rank-two quadrupole align-

ment is most easily measured in nonselective experi-

ments on systems with small quadrupole interactions.
This measurement provides an additional constraint

that makes it possible to determine the spectral

densities.

2.2.2. Relaxation of spin I ¼ 5
2
multipole alignments

The quadrupole and shielding relaxation of the three

odd-rank multipole alignments of spin I ¼ 5
2
nuclei may

be described by the system of simultaneous equations

Table 4

Matrix elements of the spin I ¼ 3
2
quadrupole relaxation operator

DQ
z;zðnr; tÞ ¼ �18

25
½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ þ 4JQx2�y2 ;x2�y2 ð2x0; tÞ þ 4JQxy;xyð2x0; tÞ�

DQ

z;z3 ðnr; tÞ ¼ �36
25
½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ � JQx2�y2 ;x2�y2 ð2x0; tÞ � JQxy;xyð2x0; tÞ�

DQ

z3 ;zðnr; tÞ ¼ �36
25
½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ � JQx2�y2 ;x2�y2 ð2x0; tÞ � JQxy;xyð2x0; tÞ�

DQ

z3 ;z3 ðnr; tÞ ¼ �18
25
½4JQxz;xzðx0; tÞ þ 4JQyz;yzðx0; tÞ þ JQx2�y2 ;x2�y2 ð2x0; tÞ þ JQxy;xyð2x0; tÞ�

DQ

z2 ;z2 ðnr; tÞ ¼ �18
5
½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ þ JQx2�y2 ;x2�y2 ð2x0; tÞ þ JQxy;xyð2x0; tÞ�

Table 5

Matrix elements of the spin I ¼ 3
2
shielding relaxation operator

DS
z;zðnr; tÞ ¼ 1

4
x2

0 J
S
x;xðx0; tÞ

h
þ J Sy;yðx0; tÞ � 36

25
½JSxz;xzðx0; tÞ þ JSyz;yzðx0; tÞ�

i

DS
z2 ;z2 ðnr; tÞ ¼ 3

4
x2

0 J
S
x;xðx0; tÞ

h
þ JSy;yðx0; tÞ � 36

25
½JSxz;xzðx0; tÞ þ JSyz;yzðx0; tÞ�

i

DS
z3 ;z3 ðnr; tÞ ¼ 3

2
x2

0 J
S
x;xðx0; tÞ

h
þ JSy;yðx0; tÞ � 36

25
½JSxz;xzðx0; tÞ þ JSyz;yzðx0; tÞ�

i
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o

ot

~qqzðnr; tÞ
~qqz3ðnr; tÞ
~qqz5ðnr; tÞ

2
664

3
775 ¼

Dz;zðnr; tÞ Dz;z3ðnr; tÞ 0

Dz3;zðnr; tÞ Dz3;z3ðnr; tÞ Dz3;z5ðnr; tÞ
0 Dz5;z3ðnr; tÞ Dz5;z5ðnr; tÞ

2
64

3
75

�
~qqzðnr; tÞ
~qqz3ðnr; tÞ
~qqz5ðnr; tÞ

2
64

3
75; ð77Þ

whereas the relaxation of the two even-rank multipole

alignments is defined by

o

ot
~qqz2ðnr; tÞ
~qqz4ðnr; tÞ

� �
¼ Dz2;z2ðnr; tÞ Dz2;z4ðnr; tÞ

Dz4;z2ðnr; tÞ Dz4;z4ðnr; tÞ

� �
~qqz2ðnr; tÞ
~qqz4ðnr; tÞ

� �
;

ð78Þ
where the elements of the relaxation operator are listed
in Tables 6 and 7 in terms of the corresponding spectral

densities. The equilibrium state of predominantly ran-

k-one dipole alignment is distributed by any selective

inversion pulse among rank-one dipole, rank-three oc-

tupole, and rank-five multipole alignments. The simul-

taneous evolution of these alignments implies that the

relaxation cannot be described by simple exponentials

and relaxation times. Although it is useful to measure

the relaxation of the even-rank multipole alignments
these states are difficult or impossible to create in se-

lective experiments. Because the even-rank multipole

alignments evolve simultaneously the relaxation of these

states cannot be exponential.

2.2.3. Effects of relaxation anisotropy on partially relaxed

lineshapes

It is instructive to investigate in more detail the effects
of anisotropic motion and relaxation on solid-state

central transition NMR spectra of some representative

model systems involving half-integer quadrupole nuclei.

This will not only demonstrate the potential of the

methods introduced in this paper but also provide some

guidelines that may be useful in implementing the ex-

periments and interpreting the results. It is known that

many systems involving half-integer quadrupole nuclei
have considerable quadrupole interactions. This makes

it impossible to observe the satellite transitions and the

experiments are usually designed to record the central

transition selectively [37–39]. Because the central tran-

sition is dominated by the second-order quadrupole and

first-order shielding interactions the spectra have char-

acteristic lineshapes that may provide information about

Table 6

Matrix elements of the spin I ¼ 5
2
quadrupole relaxation operator

DQ
z;zðnr; tÞ ¼ �128

25
½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ þ 4JQx2�y2 ;x2�y2 ð2x0; tÞ þ 4JQxy;xyð2x0; tÞ�

DQ

z;z3 ðnr; tÞ ¼ � 1152

25
ffiffiffiffi
14

p ½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ � JQx2�y2 ;x2�y2 ð2x0; tÞ � JQxy;xyð2x0; tÞ�

DQ

z3 ;zðnr; tÞ ¼ � 1152

25
ffiffiffiffi
14

p ½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ � JQx2�y2 ;x2�y2 ð2x0; tÞ � JQxy;xyð2x0; tÞ�

DQ

z3 ;z3 ðnr; tÞ ¼ �16
25
½82JQxz;xzðx0; tÞ þ 82JQyz;yzðx0; tÞ þ 83JQx2�y2 ;x2�y2 ð2x0; tÞ þ 83JQxy;xyð2x0; tÞ�

DQ

z3 ;z5 ðnr; tÞ ¼ �32
ffiffi
5

pffiffi
7

p ½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ � JQx2�y2 ;x2�y2 ð2x0; tÞ � JQxy;xyð2x0; tÞ�

DQ

z5 ;z3 ðnr; tÞ ¼ �32
ffiffi
5

pffiffi
7

p ½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ � JQx2�y2 ;x2�y2 ð2x0; tÞ � JQxy;xyð2x0; tÞ�

DQ

z5 ;z5 ðnr; tÞ ¼ �16½2JQxz;xzðx0; tÞ þ 2JQyz;yzðx0; tÞ þ JQx2�y2 ;x2�y2 ð2x0; tÞ þ JQxy;xyð2x0; tÞ�

DQ

z2 ;z2 ðnr; tÞ ¼ �48
35
½22JQxz;xzðx0; tÞ þ 22JQyz;yzðx0; tÞ þ 27JQx2�y2 ;x2�y2 ð2x0; tÞ þ 27JQxy;xyð2x0; tÞ�

DQ

z2 ;z4 ðnr; tÞ ¼ �96
ffiffi
3

p

7
½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ � JQx2�y2 ;x2�y2 ð2x0; tÞ � JQxy;xyð2x0; tÞ�

DQ

z4 ;z2 ðnr; tÞ ¼ �96
ffiffi
3

p

7
½JQxz;xzðx0; tÞ þ JQyz;yzðx0; tÞ � JQx2�y2 ;x2�y2 ð2x0; tÞ � JQxy;xyð2x0; tÞ�

DQ

z4 ;z4 ðnr; tÞ ¼ �16
7
½26JQxz;xzðx0; tÞ þ 26JQyz;yzðx0; tÞ þ 23JQx2�y2 ;x2�y2 ð2x0; tÞ þ 23JQxy;xyð2x0; tÞ�

Table 7

Matrix elements of the spin I ¼ 5
2
shielding relaxation operator

DS
z;zðnr; tÞ ¼ 1

4
x2

0 J
S
x;xðx0; tÞ

h
þ J Sy;yðx0; tÞ � 256

25
½J Sxz;xzðx0; tÞ þ JSyz;yzðx0; tÞ�

i

DS
z2 ;z2 ðnr; tÞ ¼ 3

4
x2

0 J
S
x;xðx0; tÞ

h
þ JSy;yðx0; tÞ� 256

25
½JSxz;xzðx0; tÞþ JSyz;yzðx0; tÞ�

i

DS
z3 ;z3 ðnr; tÞ ¼ 3

2
x2

0 J
S
x;xðx0; tÞ

h
þ JSy;yðx0; tÞ� 256

25
½JSxz;xzðx0; tÞþ JSyz;yzðx0; tÞ�

i

DS
z4 ;z4 ðnr; tÞ ¼ 5

2
x2

0 J
S
x;xðx0; tÞ

h
þ JSy;yðx0; tÞ� 256

25
½JSxz;xzðx0; tÞþ JSyz;yzðx0; tÞ�

i

DS
z5 ;z5 ðnr; tÞ ¼ 15

4
x2

0 J
S
x;xðx0; tÞ

h
þ J Sy;yðx0; tÞ� 256

25
½J Sxz;xzðx0; tÞþ JSyz;yzðx0; tÞ�

i
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the structural and motional details of the system. As we
have already discussed it is essential for any accurate

investigation of molecular motion to record both fully

and partially relaxed lineshapes. The influence of mo-

lecular motion on fully relaxed central transition NMR

spectra has previously been discussed and shown to be

useful to characterize systems in the intermediate mo-

tion regime [40–42]. In the case of strong quadrupole

interactions the fully relaxed lineshapes are most easily
obtained using the central transition spin-echo experi-

ment while the partially relaxed spectra may be recorded

by implementing the central transition inversion-recov-

ery experiment. The pulse sequences used in these ex-

periments are illustrated in Fig. 1 which also includes

diagrams of the allowed coherence transfer pathways. It

is noted that the pulse sequences may be applied to any

half-integer quadrupole nucleus and any solid material.

The density operator formalism introduced in the
preceding sections has formed the basis for the devel-

opment of Fortran 95 programs to simulate both fully

and partially relaxed lineshapes for any half-integer

quadrupole nucleus. These programs include all multi-

pole coherences and alignments and may be applied to

simulate both satellite and central transition spectra.

Although the density operator formalism makes simu-

lations of molecular motion much more difficult it is the
most efficient approach to calculate coherence transfer

processes during periods of rf irradiation and represent

effects of finite rf pulse length. The simulation of finite rf

pulse length effects is very difficult in the presence of

molecular motion and has previously only been ac-

complished for deuterons [33]. In selective experiments

implementing weak rf fields the effects of finite pulse

length may be pronounced and cannot usually be ig-
nored for half-integer quadrupole nuclei. This is dem-

onstrated in Fig. 2 where we show simulations of central

transition lineshapes for both nonselective and selective

experiments. The effects of finite pulse length are van-

ishing in nonselective experiments where the quadrupole

and shielding interactions may be ignored during short

periods of strong rf irradiation. However, because of the

stringent rf requirements it is impossible to implement
nonselective experiments for systems with large quad-

rupole and shielding interactions. In these cases the

systems may be studied by observing the central tran-

sition in selective experiments using weak rf fields and

long pulses. For most half-integer quadrupole nuclei the

quadrupole and shielding interactions are substantial

and must be included in the course of selective rf irra-

Fig. 1. Experimental schemes used for central transition NMR spec-

troscopy of half-integer quadrupole nuclei. The central transition spin-

echo experiment (a) is implemented to obtain fully relaxed spectra. The

sequence has two selective rf pulses of lengths sp1 and sp2 and phases

up1 and up2 and two delay periods of lengths sd1 and sd2. The first rf

pulse creates single-quantum coherences that relax during the first

delay period. The sensitivity is optimized by adjusting the pulse length

so that sp1xeff ¼ p
2
where the effective rf field strength xeff ¼ xrf ½I þ 1

2
�

for the central transition. The second rf pulse refocuses the single-

quantum coherences and creates an echo at the end of the second delay

period. The refocusing is optimized for the central transition by

matching the pulse length so that sp2xeff ¼ p. The central transition

inversion-recovery experiment (b) is used to obtain partially relaxed

lineshapes. The sequence has a selective rf pulse of length sp1 and phase

up1 to invert the central transition. For optimum inversion the pulse

length is adjusted so that sp1xeff ¼ p. The inversion creates multipole

alignments that relax during the first delay period of length sd1 before

being monitored by the central transition spin-echo sequence. This has

two selective rf pulses of lengths sp2 and sp3 and phases up2 and up3

and two delay periods of lengths sd2 and sd3.

Fig. 2. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample demonstrating the effects of non-

selective (a,b) and selective (c,d) excitation. The results include fully

relaxed (a,c) and fully inverted (b,d) spectra for ultraslow molecular

motion. The calculations used the Larmor frequency m0 ¼ 54:24MHz,

quadrupole coupling constant CQ ¼ 5:0MHz, and quadrupole asym-

metry parameter gQ ¼ 0:10. In these simulations nonselective excita-

tion corresponds to infinitely strong and short rf pulses while selective

excitation is defined by the rf field strength mrf ¼ 25kHz, pulse lengths

sp1 ¼ 20
3
ls, sp2 ¼ 10

3
ls, and sp3 ¼ 20

3
ls, and delay length sd2 ¼ 50ls.

The effects of finite rf pulse length are evident by comparing the spectra

for nonselective and selective excitation.
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diation. The central transition is usually very broad
making uniform selective excitation and inversion im-

possible. The result is that the lineshapes exhibit sig-

nificant phase and intensity distortions. The phase

distortions may usually be corrected by shifting the echo

maximum. However, the intensity distortions cannot be

eliminated and must be simulated by explicit calcula-

tion. The results presented in Fig. 2 show that it is im-

possible to accurately simulate central transition
lineshapes without including the effects of finite rf pulse

length. It is obvious that the values of the quadrupole

and shielding parameters may become inaccurate if the

intensity distortion effects are ignored in the simulations.

Moreover, it is impossible to accurately characterize the

motion without considering the effects of finite rf pulse

length. The only experimental procedures to reduce the

distortion effects involve using composite pulses or re-
ducing the pulse lengths. Because these techniques may

reduce the sensitivity and introduce other distortions it

is usually better to include the effects of finite pulse

length in the calculations. It is obvious that the line-

shapes may exhibit additional intensity distortions in the

case of imperfect powders with a nonuniform distribu-

tion of crystallites. These distortions can only be simu-

lated if the crystallite distribution is known which is
usually not the case for most systems. The best experi-

mental procedure to eliminate these distortions is to

ensure that the experiments are performed on finely

ground powders.

As an example we have calculated central transition

spin-echo and inversion-recovery 17O NMR spectra for

an oxygen nucleus reorienting between three different

motional states. These states are illustrated in Fig. 3 and
correspond to three different orientations of the princi-

pal axis system of the quadrupole tensor relative to the

crystallite fixed axis system. Because the lineshapes de-

pend strongly on the precise geometry this system is
useful for studying the influence of different tensor ori-

entations and rate constants. The effects of anisotropic

molecular motion on fully relaxed lineshapes are dem-

onstrated in Fig. 4 which shows the calculated central

transition spin-echo 17O NMR spectra for two different

sets of tensor orientations. It is seen that there are no

distinct differences between the spectra in the slow mo-

tion regime ðkmn6 103HzÞ making it almost impossible
to differentiate between different tensor orientations and

determine the rate constants. The results are more

interesting in the intermediate motion regime

ð103Hz6 kmn6 106HzÞ where it is possible to measure

the tensor orientations and rate constants with relatively

high accuracy. However, it is important to realize that it

is difficult or impossible to distinguish small differences

in the tensor orientations and rate constants and that
there may be several different models that produce the

same fully relaxed lineshapes. In the fast motion regime

Fig. 3. Geometry of threefold rotation showing the orientations

X2ðnkÞ ¼ f3p
2
; h; 2p½k�1�

3
g of the principal axis system of the quadrupole

tensor relative to the crystallite fixed axis system.

Fig. 4. Simulated central transition spin-echo 17O NMR spectra of a

polycrystalline sample as function of the rate constant k for reorien-

tation between three different orientations X2ðnkÞ ¼ f3p
2
; p
9
; 2p½k�1�

3
g (left

column) and X2ðnkÞ ¼ f3p
2
; p
6
; 2p½k�1�

3
g (right column) of the principal

axis system of the quadrupole tensor. The calculations used the Lar-

mor frequency m0 ¼ 54:24MHz, rf field strength mrf ¼ 25kHz, pulse

lengths sp1 ¼ 10
3
ls and sp2 ¼ 20

3
ls, delay length sd1 ¼ 50ls, quadrupole

coupling constant CQ ¼ 5:0MHz, and quadrupole asymmetry

parameter gQ ¼ 0:10. The effects of finite rf pulse length have been

included in the simulations.
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ðkmn P 106HzÞ the spectra gradually converge to an in-
variant lineshape defined by the motionally averaged

Hamiltonian. For central transition spectra dominated

by the second-order quadrupole interaction this line-

shape cannot be described by simple average quadrupole

parameters but must be calculated explicitly for any

given system [40]. The results indicate that it is possible

to differentiate between different tensor orientations.

However, there are usually many different models that
give the same averaged lineshapes, making the inter-

pretation of the results difficult or ambiguous. More-

over, because the spectra become invariant it is

impossible to determine the rate constants in the fast

motion regime. In many cases the only result that can be

obtained is a lower limit on the rate constants. These

results show that fully relaxed lineshapes obtained using

the central transition spin-echo experiment are very

useful in the intermediate motion regime but may lead to
inaccurate or ambiguous results in the slow and fast

motion regimes.

It is known that the properties of many important

solid materials are determined by either slow or fast

anisotropic molecular motion. Although the motion

may be temperature activated it is not always possible to

study these systems in the intermediate motion regime

where the spectra are more easily interpreted. The
problem is especially difficult for temperature sensitive

materials and systems where the structure and motion

may change as a result of phase transitions. In order to

resolve any potential ambiguity and inaccuracy in

characterizing the motion it is useful to investigate the

partially relaxed lineshapes. The most eminent advan-

tages of studying partially relaxed spectra are that the

accuracy of the results is improved significantly and the
number of possible motional models is reduced. As an

example we have calculated the partially relaxed spectra

corresponding to the system described above involving

three motional states.

Fig. 5. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion has the rate constant logðkÞ ¼ 3:00 (left

column) and logðkÞ ¼ 3:25 (right column) and involves transitions

between three equally probable orientations X2ðnkÞ ¼ f3p
2
; p
9
; 2p½k�1�

3
g of

the principal axis system of the quadrupole tensor. The calculations

implemented the Larmor frequency m0 ¼ 54:24MHz, rf field strength

mrf ¼ 25kHz, pulse lengths sp1 ¼ 20
3
ls, sp2 ¼ 10

3
ls, and sp3 ¼ 20

3
ls, de-

lay length sd2 ¼ 50ls, quadrupole coupling constant CQ ¼ 5:0MHz,

and quadrupole asymmetry parameter gQ ¼ 0:10. The simulations

include effects of finite rf pulse length.

Fig. 6. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion is specified by the rate constant

logðkÞ ¼ 3:00 (left column) and logðkÞ ¼ 3:25 (right column) and

involves reorientation between three different orientations X2ðnkÞ ¼
f3p
2
; p
6
; 2p½k�1�

3
g of the principal axis system of the quadrupole tensor.
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The results for slow molecular motion are shown in
Figs. 5–8 where we compare central transition inversion-

recovery 17O NMR spectra for some representative

models that differ only slightly in the tensor orientations

and rate constants. For these models it is seen that the

fully relaxed lineshapes are almost independent of the

tensor orientations and rate constants, making it diffi-

cult or impossible to characterize the motion accurately

and unambiguously. However, it is evident that the
partially relaxed lineshapes are very sensitive to

the values of the rate constants and tensor orientations.

The differences between the models are most pro-

nounced for the spectra near the inversion point where

the intensities change from negative to positive. This is

also the point where the relaxation anisotropy is ex-

pressed most strongly. The relaxation anisotropy is

readily identified by noting that the spectral components
at lower frequencies relax much faster than those at

higher frequencies. The origin of the relaxation anisot-

ropy may be understood by examining the form of the

spectral densities (Eq. (42)). Because these involve the

elements of the anisotropic Hamiltonian they depend

explicitly on the crystallite orientation. The result is that
the relaxation rate becomes a function of the orientation

and is different for each crystallite. The anisotropy of the

Hamiltonian implies that each crystallite orientation

defines a spectral component at the corresponding cen-

tral transition frequency. In the case of a polycrystalline

powder the lineshape is a superposition of spectral

components defined by all possible crystallite orienta-

tions. Because the relaxation rate for each individual
spectral component is different the relaxation of the

powder lineshape may exhibit a strong anisotropy.

The calculations presented in Figs. 5–8 demonstrate

that relaxation measurements make it possible to dis-

tinguish very small differences in the rate constants and

tensor orientations. For any given set of tensor orien-

tations the spectra are seen to have similar relaxation

anisotropies. However, the models may easily be differ-
entiated because the system with the largest rate con-

stants relaxes significantly faster. Similarly, because

different tensor orientations lead to different relaxation

anisotropies and relaxation rates it is possible to

Fig. 7. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion has the rate constant logðkÞ ¼ 3:00 and

involves transitions between three equally probable orientations

X2ðnkÞ ¼ f3p
2
; p
9
; 2p½k�1�

3
g (left column) and X2ðnkÞ ¼ f3p

2
; p
6
; 2p½k�1�

3
g (right

column) of the principal axis system of the quadrupole tensor.

Fig. 8. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion has the rate constant logðkÞ ¼ 3:00

and involves reorientation between three different orientations

X2ðnkÞ ¼ f3p
2
; p
9
; 2p½k�1�

3
g of the principal axis system of the quadrupole

tensor. The calculations implemented the Larmor frequency

m0 ¼ 54:24MHz (left column) and m0 ¼ 67:80MHz (right column).
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distinguish between different geometries. The results are
most easily understood by considering the form of the

spectral densities (Eq. (42)). By extending the upper

limit on the integral to infinity one finds that

Jp1p2ðnx0Þ ¼ �2
XN
k¼1

XN
l¼1

XN
m¼1

H1p1ðnlÞH1p2ðnkÞb
ðmÞ
kl

� km
k2
m þ n2x2

0

; ð79Þ

which depends on the eigenvalues km of the stochastic

matrix and the frequency nx0 of the particular nuclear
spin transition. This result is strictly valid only for fast

molecular motion where the spectral densities become

time independent [22–25]. However, it represents an

approximation that is useful to discuss the form of the

spectral densities. Because the elements of the relaxation

operator depend on the spectral densities it is evident

that these provide a measure of the relaxation rates. The

different motional regimes may be distinguished by
noting that the eigenvalues of the stochastic matrix are

all real and negative and of the order of the rate con-

stants. In the case of slow and intermediate molecular
motion (jkmj � x0) the spectral densities may be

approximated by

Jp1p2ðnx0Þ ¼ �2
XN
k¼1

XN
l¼1

XN
m¼1

H1p1ðnlÞH1p2ðnkÞb
ðmÞ
kl

km
n2x2

0

;

ð80Þ

which reveal that the corresponding relaxation rate is

relatively small. However, the relaxation rate is an in-

creasing function of the rate constants. In the case of
quadrupole relaxation the relaxation rate is a decreasing

function of the Larmor frequency. This frequency de-

pendence is shown in Fig. 8 where the lineshapes are

presented for two different Larmor frequencies. It is seen

that the system with the highest Larmor frequency re-

laxes slower. Because the shielding Hamiltonian is pro-

portional to the Larmor frequency there is no frequency

dependence for a system dominated by shielding relax-
ation.

In the case of fast molecular motion the calculated

central transition inversion-recovery 17O NMR spectra

Fig. 9. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion is characterized by the rate constant

logðkÞ ¼ 7:00 (left column) and logðkÞ ¼ 7:25 (right column) and

involves transitions between three different orientations X2ðnkÞ ¼
f3p
2
; p
9
; 2p½k�1�

3
g of the principal axis system of the quadrupole tensor.

Fig. 10. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion has the rate constant logðkÞ ¼ 7:00 (left

column) and logðkÞ ¼ 7:25 (right column) and involves reorientation

between three equally probable orientations X2ðnkÞ ¼ f3p
2
; p
6
; 2p½k�1�

3
g of

the principal axis system of the quadrupole tensor.
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are shown in Figs. 9–12 for the models described above
involving three motional states. The most characteristic

feature of the spectra in the fast motion regime is that

the lineshapes are defined by a motionally averaged

second-order quadrupole interaction. The lineshapes are

relatively complicated and cannot be described in terms

of average quadrupole parameters [40]. Although the

spectra are seen to be sensitive to the tensor orientations

and rate constants there are many different models that
may reproduce the same fully relaxed lineshapes. This

ambiguity may often be resolved by studying the par-

tially relaxed lineshapes that are seen to be very sensitive

to the precise tensor orientations and rate constants. For

any given set of tensor orientations the spectra exhibit a

similar relaxation anisotropy but the relaxation rate is

different depending on the rate constants. Because the

relaxation rate depends strongly on the rate constants it
is possible to distinguish between models that differ only

slightly. Similarly, for partially relaxed spectra calcu-

lated with the same rate constants there are distinct

differences depending on the tensor orientations. It is

seen that the relaxation rate varies considerably and
may be very high in the fast motion regime.

The behavior of the relaxation rate is readily ex-

plained by considering the functional form of the spec-

tral densities. As discussed above the spectral densities

and corresponding relaxation rates are increasing func-

tions of the rate constants provided that the motion is

sufficiently slow. However, it is evident that the spectral

densities have maximum intensity when km ¼ nx0 and
this intensity may be orders of magnitude higher than in

the slow motion regime. The existence of the relaxation

maximum is consistent with the fact that the relaxation

is fastest when the oscillation frequencies of the local

magnetic fields generated by the motion match the nu-

clear spin transition frequencies. In the case of either

much faster or slower motion the spectral densities de-

crease significantly, making the relaxation of the system
orders of magnitude slower. The results presented in

Figs. 9–12 for the fast motion regime demonstrate that

the relaxation rate is an increasing function of the rate

constants and considerably higher compared with the

slow motion regime. This shows that the relaxation rate

Fig. 11. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion has the rate constant logðkÞ ¼ 7:00 and

involves transitions between three different orientations X2ðnkÞ ¼
f3p
2
; p
9
; 2p½k�1�

3
g (left column) and X2ðnkÞ ¼ f3p

2
; p
6
; 2p½k�1�

3
g (right column)

of the principal axis system of the quadrupole tensor.

Fig. 12. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion has the rate constant logðkÞ ¼ 7:00 and

involves reorientation between three equally probable orientations

X2ðnkÞ ¼ f3p
2
; p
9
; 2p½k�1�

3
g of the principal axis system of the quadrupole

tensor. The calculations implemented the Larmor frequency

m0 ¼ 54:24MHz (left column) and m0 ¼ 67:80MHz (right column).
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is close to but below its expected maximum. As dis-
cussed above the quadrupole relaxation rate depends

explicitly on the Larmor frequency below the relaxation

maximum. This is demonstrated in Fig. 12 where the

partially relaxed spectra are compared for different

Larmor frequencies. It is obvious that the frequency

dependence may be useful for diagnostic purposes. The

shielding relaxation is clearly independent of the Larmor

frequency below the relaxation maximum.
The existence of a relaxation maximum suggests that

the relaxation rate is a decreasing function of the rate

constants for ultrafast molecular motion. This result is

verified by considering the form of the spectral densities.

In the case of ultrafast motion (jkmj � x0) these may be

approximated by

Jp1p2ðnx0Þ ¼ �2
XN
k¼1

XN
l¼1

XN
m¼1

H1p1ðnlÞH1p2ðnkÞb
ðmÞ
kl k�1

m ;

ð81Þ

which are decreasing functions of the rate constants. The

equation demonstrates that the relaxation rate is

independent of the Larmor frequency for the quadrupole
interaction. However, in the case of the shielding inter-

action the relaxation rate becomes a quadratic function

of the Larmor frequency. It is useful to compare the

simulations discussed above for the fast motion regime

with the calculations shown in Figs. 13–16 for ultrafast

molecular motion. It is seen that the fully relaxed line-

shapes are identical in the fast and ultrafast motion re-

gimes. However, the quadrupole relaxation rate is not
only smaller but also a decreasing function of the rate

constants for ultrafast molecular motion. Moreover, the

quadrupole relaxation rate is independent of the Larmor

frequency. This is characteristic for quadrupole relaxa-

tion above the relaxation maximum and highly diag-

nostic of ultrafast molecular motion. The simulations

reveal that the partially relaxed spectra in the fast and

ultrafast motion regime are very sensitive to the values of
the rate constants and tensor orientations. Moreover, by

examining the frequency dependence of the relaxation

rate it is possible to distinguish between motional re-

gimes corresponding to fast and ultrafast motion where

the lineshapes and relaxation rates may be similar.

Fig. 13. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion is characterized by the rate constant

logðkÞ ¼ 13:00 (left column) and logðkÞ ¼ 13:25 (right column) and

involves transitions between three different orientations X2ðnkÞ ¼
f3p
2
; p
9
; 2p½k�1�

3
g of the principal axis system of the quadrupole tensor.

Fig. 14. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion has the rate constant logðkÞ ¼ 13:00 (left

column) and logðkÞ ¼ 13:25 (right column) and involves reorientation

between three different orientations X2ðnkÞ ¼ f3p
2
; p
6
; 2p½k�1�

3
g of the

principal axis system of the quadrupole tensor.
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3. Experimental

In order to demonstrate the usefulness of the tech-

niques developed in this paper we have applied central

transition spin-echo and inversion-recovery 17O NMR

spectroscopy to characterize the oxygen disorder in the

silica (SiO2) polymorph cristobalite. This system is in-

teresting in the context of anisotropic relaxation be-
cause it is difficult or impossible to characterize the

oxygen motion unambiguously by studying the fully

relaxed central transition 17O NMR lineshapes [40]. It is

known that silica may exist in several structural modi-

fications that are stable at different temperatures and

pressures [43]. The stable crystalline forms at ambient

pressures are known as quartz, tridymite, and cristo-

balite. The cristobalite polymorph is stable from 1743K
to its melting point at 1983K. The silica modifications

are built from SiO4 tetrahedra sharing each of their

corners with other tetrahedra to form a regular frame-

work structure. The arrangement of the tetrahedra is

different in each modification, giving the structures un-

ique physical characteristics. The conversion of one

polymorphic form into another involves the breaking of

strong bonds and is a very sluggish process. This ex-

plains why the high temperature and pressure modifi-

cations may exist metastably at ambient temperatures
and pressures and are found in various earth minerals.

There are at least two different modifications of each

polymorphic form that are stable at different tempera-

tures and pressures. The interconversion of these forms

merely involves slight rotations of the SiO4 tetrahedra

relatively to one another without any rearrangement of

bonds and is an easy and reversible process. In the case

of cristobalite the rotations responsible for the transi-
tion from the low-temperature a-phase to the high-

temperature b-phase have been identified and shown to

corres- pond to adjacent tetrahedra rotating in opposite

directions.

The structural and motional details of cristobalite

have previously been investigated using a variety of ex-

perimental and computational techniques. The results of

these studies have led to many different models of the

Fig. 15. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of

the relaxation delay. The motion has the rate constant

logðkÞ ¼ 13:00 and involves transitions between three different ori-

entations X2ðnkÞ ¼ f3p
2
; p
9
; 2p½k�1�

3
g (left column) and X2ðnkÞ ¼

f3p
2
; p
6
; 2p½k�1�

3
g (right column) of the principal axis system of the

quadrupole tensor.

Fig. 16. Simulated central transition inversion-recovery 17O NMR

spectra of a polycrystalline sample as function of the length sd1 of the

relaxation delay. The motion has the rate constant logðkÞ ¼ 13:00

and involves reorientation between three different orientations

X2ðnkÞ ¼ f3p
2
; p
9
; 2p½k�1�

3
g of the principal axis system of the quadrupole

tensor. The calculations used the Larmor frequency m0 ¼ 54:24MHz

(left column) and m0 ¼ 67:80MHz (right column).
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a–b phase transition and been subject to much contro-
versy. It is known from XRD experiments that b-
cristobalite has a disordered structure with the oxygen

atoms distributed among six or twelve positions [44,45].

However, because XRD only provides a time- and

space-averaged structure it is impossible to determine

the nature of the disorder. Another approach based on

electron diffraction suggests that a-cristobalite has a

highly twinned structure with large twin domains cor-
responding to different orientations of the oxygen atoms

[46]. The twin domains have been observed to become

smaller with increasing temperature and eventually dis-

appear in b-cristobalite. It has been suggested that the

twin domains may exist on a unit cell length scale and

that b-cristobalite represents a space average of these

domains [47,48]. However, recent neutron total scatter-

ing studies indicate that the intermediate range structure
of b-cristobalite is not an average of a-cristobalite do-

mains [49]. The low energy rotations in b-cristobalite
have been characterized by molecular dynamics calcu-

lations and shown to correspond to excitation of rigid

unit modes [50,51]. In this approach the rotations of the

oxygen atoms are explained by superposing rigid unit

modes on one another. This model is supported by the

results of 17O NMR which show that the oxygen atoms
in b-cristobalite are dynamically disordered [40,52].

However, because the central transition spin-echo 17O

NMR spectra of cristobalite are difficult to interpret it is

useful to investigate the oxygen relaxation to obtain a

more accurate description of the dynamic disorder and

the a–b phase transition.

The local disorder in cristobalite is represented by the
model shown in Fig. 17 where the oxygen nuclei are

distributed among N ¼ 6 equally probable positions on

a circle orthogonal to the Si–Si axis between adjacent

tetrahedra. It is important to note that any model with

N P 3 represents a physically plausible model of the

oxygen disorder in cristobalite. However, the use of

N ¼ 6 is supported by the symmetry of the system as

determined by XRD results [44,45]. The motion is as-
sumed to involve transitions between nearest orienta-

tions. These transitions are described by a discrete

Markov process with rate constants kn;nþ1 ¼ knþ1;n ¼ k
(n ¼ 1; . . . ;N � 1) and k1N ¼ kN1 ¼ k. In this model the

lineshapes obtained for different numbers of orienta-

tions may be identical whereas the rate constants in-

crease with the number of orientations. This shows that

the rate constants are model dependent parameters and
should be interpreted accordingly. Because the motional

graph of the system exhibits CNv symmetry it is possible

to obtain symmetrized coherences and alignments cor-

responding to the irreducible representations [53]. This

result is useful because the evaluation of the spectral

densities becomes more efficient by implementing sym-

metrized coherences and alignments.

The central transition spin-echo 17O NMR spectra of
cristobalite are shown in Fig. 18 for different tempera-

Fig. 17. Geometry of sixfold rotation of the oxygen atoms in cristo-

balite showing the orientations of the principal axis system of the

quadrupole tensor relative to the crystallite fixed axis system.

Fig. 18. Experimental (left column) and simulated (right column)

central transition spin-echo 17O NMR spectra of enriched (47%)

polycrystalline cristobalite as function of temperature. The spectra

were acquired on a Varian CMX Infinity spectrometer with Larmor

frequency m0 ¼ 54:23MHz, rf field strength mrf ¼ 23:8kHz, pulse

lengths sp1 ¼ 3:5ls and sp2 ¼ 7:0ls, and delay length sd1 ¼ 50ls.
There are no effects of oxygen motion below the a–b phase transition

(T < 528K) where the lineshapes are defined by the quadrupole and

shielding interactions. The spectra exhibit significant effects of finite rf

pulse length. The lineshape is different above the a–b phase transition

(T P 528K) where the spectral components become narrower and the

intensity in the central part decreases slightly. These effects are the

results of motional averaging and the decrease in the quadrupole

asymmetry parameter.

118 J.H. Kristensen, I. Farnan / Journal of Magnetic Resonance 158 (2002) 99–125



tures both below and above the a–b phase transition. It
is evident that there are no easily discernible effects of

molecular motion in the spectra of a-cristobalite.
However, the spectra show significant intensity distor-

tions because of finite pulse length. These distortions

have been accurately reproduced in the numerical sim-

ulations. The experiments were performed on highly

polycrystalline samples and the spectra show no dis-

tortions related to imperfect powders. The immediate
conclusion is that a-cristobalite is either a static struc-

ture or the motion is sufficiently slow (k6 103Hz) that

there are no significant lineshape effects. However, the

spectra of b-cristobalite can only be simulated correctly

by assuming that the oxygen atoms exhibit fast motion

(kP 105Hz). The lineshapes are defined by a motionally

averaged quadrupole and shielding interaction. This

implies that the rate constants cannot be determined
precisely from the fully relaxed spectra. Another com-

plication is that the fast oxygen motion makes the de-

termination of the structural NMR parameters difficult.

The most imminent problem is that the quadrupole

coupling constant depends on the orientation of the

quadrupole tensor used in the motional model. This is

most easily understood by considering Fig. 19 where the

central transition spin-echo 17O NMR spectra of cris-
tobalite are shown for different quadrupole coupling

constants and tensor orientations. It is seen that the

width of the spectra for slow motion is sensitive to the

value of the quadrupole coupling constant. However, in

the case of fast oxygen motion it is possible to define

many combinations of quadrupole coupling constants

and tensor orientations that produce almost identical

spectra. In particular, it is seen that the width of the
spectra is invariant making it impossible to determine

the quadrupole coupling constant and tensor orien-
tation.

In order to resolve the difficulties in describing the

structure and motion of cristobalite it is useful to in-

vestigate the anisotropic relaxation of the oxygen nuclei.

This is most conveniently accomplished by implement-

ing the central transition inversion-recovery experiment.

The partially relaxed central transition 17O NMR spec-

tra are shown in Figs. 20–23 for temperatures both be-
low and above the a–b phase transition. The results

reveal that the relaxation of the oxygen nuclei is slow in

a-cristobalite and increases only slowly with tempera-

ture. Because the sample has been prepared synthetically

and contains only few paramagnetic impurities the re-

laxation is dominated by the quadrupole and shielding

interactions. The fully relaxed lineshapes of a-cristoba-
lite exhibit no evidence of molecular motion. This ob-
servation combined with the very small but increasing

relaxation rate indicates that the oxygen atoms in

Fig. 19. Simulated central transition spin-echo 17O NMR spectra of

polycrystalline cristobalite. The motion involves reorientation between

six orientations X2ðnkÞ ¼ f3p
2
; h; p½k�1�

3
g of the principal axis system of

the quadrupole tensor. The lineshapes represent (a,b) slow and (c,d)

fast oxygen motion. The solid lines have been calculated with the

quadrupole coupling constant CQ ¼ 5:35MHz and tensor orientation

h ¼ 3p
180

while the dashed lines are for (a,c) CQ ¼ 5:50MHz and h ¼ 7p
180

and (b,d) CQ ¼ 5:75MHz and h ¼ 12p
180

.

Fig. 20. Experimental (left column) and simulated (right column)

central transition inversion-recovery 17O NMR spectra of enriched

(47%) polycrystalline cristobalite at the temperature T ¼ 298K. The

spectra were recorded as function of the length sd1 of the relaxation

delay on a Varian CMX Infinity spectrometer with Larmor frequency

m0 ¼ 54:23MHz, rf field strength mrf ¼ 23:8kHz, pulse lengths

sp1 ¼ 7:0ls, sp2 ¼ 3:5ls, and sp3 ¼ 7:0ls, and delay length

sd2 ¼ 50ls. The results are consistent with slow (logðkÞ ¼ 3:50) oxygen

motion. The simulations include the effects of finite rf pulse length.
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a-cristobalite are in the slow motion regime. The results

are accurately described by an Arrhenius equation with

activation energy Ea ¼ 7:3kJmol�1 and preexponential

factor lnðAÞ ¼ 11:0. The small activation energy indi-

cates that the motion is almost unrestricted in a-cristo-
balite. The slow but increasing oxygen motion is
reflected in the small but increasing relaxation rate.

The fully relaxed spectra of b-cristobalite are defined

by the motionally averaged quadrupole and shielding

interactions. This makes it impossible to determine the

rate constants from the fully relaxed lineshapes. How-

ever, the partially relaxed spectra are sensitive to the

values of the rate constants and tensor orientations. The

only difficulty is that the spectra may be simulated
equally well assuming either fast (logðkÞ ¼ 5:80� 0:05)
or ultrafast (logðkÞ ¼ 11:25� 0:05) motion. This com-

plication derives from the fact that the system has a

relaxation maximum. In order to distinguish between

fast and ultrafast motion it is useful to investigate the

frequency dependence of the relaxation. However, an

equally efficient but less expensive approach is based on

the already well established observation that the relax-
ation rate in b-cristobalite decreases as function of

temperature [52]. This indicates that the system is above

its relaxation maximum and exhibits ultrafast oxygen
motion. The ultrafast motion is consistent with the es-

timated oscillation frequencies of the rigid unit modes

[50,51]. The rate constants previously obtained from

fully relaxed spectra [40] are similar to those derived in

this study assuming fast oxygen motion. However, be-

cause the relaxation of the oxygen nuclei can only be

described correctly by ultrafast motion this demon-

strates the difficulty in interpreting fully relaxed line-
shapes. The fully relaxed spectra for fast and ultrafast

motion are identical and the distinction can only be

made by studying the partially relaxed spectra. At the

a–b phase transition the motion of the oxygen atoms

becomes faster by orders of magnitude. This provides an

efficient relaxation mechanism and leads to motionally

averaged lineshapes.

The central transition 17O NMR spectra of cristo-
balite have been simulated with the structural and mo-

tional parameters listed in Tables 8 and 9. The results

reveal several interesting details about the structure and

dynamics of cristobalite. The spectra have been calcu-

lated with the 17O quadrupole coupling constant

Fig. 21. Experimental (left column) and simulated (right column)

central transition inversion-recovery 17O NMR spectra of enriched

(47%) polycrystalline cristobalite at the temperature T ¼ 473K. The

results are consistent with slow (logðkÞ ¼ 3:95) oxygen motion.

Fig. 22. Experimental (left column) and simulated (right column)

central transition inversion-recovery 17O NMR spectra of enriched

(47%) polycrystalline cristobalite at the temperature T ¼ 528K. The

spectra were simulated assuming fast (logðkÞ ¼ 5:80) oxygen motion.
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CQ ¼ 5:35MHz. This value is consistent with previous
results obtained by ignoring any motion of the oxygen

atoms [52]. However, the quadrupole coupling constant

is smaller than previously deduced from fully relaxed

spectra assuming fast oxygen motion [40]. This incon-

sistency derives from the fact that the quadrupole cou-

pling constant depends on the orientation of the

quadrupole tensor used in the motional model. More

specifically, if the principal z-axis of the quadrupole
tensor is not aligned parallel to the rotation axis the

width of the motionally averaged spectra will be smaller

than if the principal z-axis is aligned parallel to the ro-

tation axis. The result is that the quadrupole coupling

constant is larger if the principal z-axis is not aligned

parallel to the rotation axis. Because there are many

combinations of quadrupole coupling constants and

tensor orientations that produce the same fully relaxed
spectra (Fig. 19) it is impossible to obtain the quadru-

pole coupling constant and tensor orientation and

characterize the fully relaxed spectra. However, by

measuring the relaxation anisotropy it is possible to

determine the precise tensor orientation resulting in the

correct value of the quadrupole coupling constant. This

demonstrates the importance of acquiring partially re-

laxed lineshapes. The fact that the quadrupole coupling
constant is close to the value previously obtained by

ignoring any motion is the result of the principal z-axis

being aligned close to the rotation axis. This is illus-

trated in Fig. 24 where the principal axis systems of the

quadrupole and shielding tensors are shown relative to

the crystallite fixed axis system.

Fig. 23. Experimental (left column) and simulated (right column) cen-

tral transition inversion-recovery 17O NMR spectra of enriched (47%)

polycrystalline cristobalite at the temperature T ¼ 528K. The spectra

were simulated assuming ultrafast (logðkÞ ¼ 11:25) oxygen motion.

Table 9

Rate constant for symmetric sixfold oxygen motion and orientation of the principal axes of the cristobalite 17O quadrupole and shielding tensors as

function of temperature

T ðKÞ X1 ðradÞ X2 ðradÞ logðkÞ

298
3p
2
;
7p
180

�
� p
180

;
p
2



3p
2
;
5p
180

�
� p
180

;
p½n� 1�

3


 3:50� 0:05

473
3p
2
;
15p
180

�
� p
180

;
p
2



3p
2
;
5p
180

�
� p
180

;
p½n� 1�

3


 3:95� 0:05

528
3p
2
;
15p
180

�
� p
180

;
p
2



3p
2
;
3p
180

�
� p
180

;
p½n� 1�

3


 11:25� 0:05

Table 8

Cristobalite 17O quadrupole and shielding parameters as function of temperature. The isotropic chemical shift is referenced to H2
17O

T (K) CQ ðMHzÞ gQ CS ðppmÞ gS diso ðppmÞ

298 5:35� 0:05 0:15� 0:05 50:0� 5:0 0:10� 0:10 40:5� 0:5

473 5:35� 0:05 0:15� 0:05 50:0� 5:0 0:10� 0:10 40:5� 0:5

528 5:35� 0:05 0:03� 0:05 50:0� 5:0 0:10� 0:10 40:5� 0:5
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In the case of a-cristobalite the calculations used the
relatively small 17O quadrupole asymmetry parameter

gQ ¼ 0:15. This value agrees with already published re-

sults for framework oxygen in similar Si–O–Si linkages

[54–57]. The quadrupole asymmetry parameter de-

creases at the a–b phase transition and for b-cristobalite
it is found that gQ ¼ 0:03. This effect has previously

been observed and attributed to the onset of fast oxygen

motion [52]. However, the motionally averaged spectra
cannot be simulated using average quadrupole param-

eters [40]. By including the oxygen motion in the simu-

lations the measured quadrupole asymmetry parameter

reflects the inherent electronic structure of the system.

This implies that the system must be subject to small

structural modifications producing an almost axially

symmetric local electron distribution. The most likely

explanation is that the Si–O–Si angle increases slightly
at the a–b phase transition. This is supported by em-

pirical correlations between the quadrupole asymmetry

parameter of framework oxygen and the Si–O–Si angle

[54–57]. Similar results suggest that the quadrupole

coupling constant should increase at the a–b phase

transition. However, the structural change is evidently

too small to be reflected in the measured quadrupole

coupling constant.
The experimental spectra can only be simulated if the

17O anisotropic shielding interaction is included in the

calculations [40,52]. The lineshapes were simulated with

the 17O shielding constant CS ¼ 50:0ppm and isotropic

chemical shift diso ¼ 40:5ppm which are representative

of similar framework structures [54–57]. The measured
17O shielding asymmetry parameter gS ¼ 0:10 indicates

that cristobalite has an almost symmetric electron dis-
tribution. This is consistent with the small quadrupole

asymmetry parameter. Because of the ultrafast oxygen

motion the spectra of b-cristobalite are completely in-

sensitive to the anisotropic shielding. This has previ-

ously led to the determination of a much smaller

shielding constant in b-cristobalite [40]. Although this is

consistent with the lineshapes there is no other indica-

tion that the shielding constant should decrease at the
a–b phase transition. As shown in Fig. 24 the orienta-

tion of the principal axis system of the shielding tensor is

almost identical to the orientation of the principal axis

system of the quadrupole tensor.

In order to probe the value of the Si–O–Si angle we

have obtained 29Si NMR spectra of cristobalite at dif-

ferent temperatures. These spectra are useful because the
29Si isotropic chemical shift is sensitive to the precise
value of the Si–O–Si angle. The results shown in Fig. 25

reveal several interesting details about the structure of

cristobalite. In the case of a-cristobalite it is seen that

the 29Si isotropic chemical shift is constant as a function

of temperature indicating an almost invariant structure.

The value is consistent with results for similar frame-

work structures and suggests that the Si–O–Si angle is in

the range 140�–150� [58]. However, the 29Si isotropic

Fig. 24. Geometry of sixfold rotation of 17O in cristobalite showing the

orientation of the principal axis systems of the quadrupole and

shielding tensors relative to the crystallite fixed axis system.

Fig. 25. Experimental 29Si NMR spectra of polycrystalline cristobalite

as function of temperature. The isotropic chemical shift is constant

below the a–b phase transition (T < 528K) indicating an invariant

structure. Above the a–b phase transition (T P 528K) the isotropic

chemical shift decreases slightly suggesting an increase in the Si–O–Si

angle.
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chemical shift decreases slightly at the a–b phase tran-
sition. This reflects a structural modification involving a

small increase in the Si–O–Si angle. The 17O isotropic

chemical shift provides another sensitive measure of the

Si–O–Si angle that is consistent with the 29Si isotropic

chemical shift.

4. Summary

In this paper we have developed new theoretical and

experimental techniques to study the effects of aniso-

tropic relaxation and motion on fully and partially re-

laxed central transition NMR spectra of half-integer

quadrupole nuclei. The results include a theoretical

formalism based on density operator algebra and the

stochastic Liouville–von Neumann equation [31–33].
This formalism may be used to describe the evolution of

the density operator in the presence of molecular motion

and relaxation. The effects of the nuclear spin interac-

tions are represented by the Hamiltonian while the

motion is described by a stochastic operator. The den-

sity operator formalism represents the most efficient way

to simulate coherence transfer processes during periods

of rf irradiation and represent finite rf pulse length ef-
fects. As shown in this paper the effects of finite rf pulse

length may be substantial in selective experiments and

must be included in simulations of central transition

spectra. The anisotropic nuclear spin interactions fluc-

tuate randomly in the presence of molecular motion and

may stimulate the relaxation of the system [22–25]. The

relaxation depends on the form of the Hamiltonian and

the details of the motion and is represented by a relax-
ation operator. This is derived from second-order per-

turbation theory and involves the spectral densities of

the system [24,25]. Although this formalism is valid only

for small time intervals it may be used recursively to

obtain the density operator at any time and for any

motional regime.

There are several experimental methods that may be

used to study the relaxation characteristics of half-inte-
ger quadrupole nuclei. Because these systems often have

substantial quadrupole interactions it is difficult to ex-

cite the satellite transitions and the spectra are usually

acquired by recording the central transition selectively

[37–39]. In this paper we have used central transition

inversion-recovery spectroscopy to measure the aniso-

tropic relaxation of the different multipole alignments.

In this technique the system is subject to a central
transition inversion pulse creating a nonequilibrium

state of multipole alignments. This state is allowed to

relax in a variable relaxation period before being mon-

itored by the central transition spin-echo sequence. The

experiment is repeated for different relaxation delays to

acquire a series of partially relaxed central transition

lineshapes.

The simulation of central transition inversion-recov-
ery spectra involves describing the relaxation of the

different nuclear spin multipole alignments. For half-

integer quadrupole nuclei the 2I multipole alignments

may be classified into I þ 1
2
odd-rank and I � 1

2
even-

rank multipole alignments. The most important inter-

actions for half-integer quadrupole nuclei are the

quadrupole and shielding interactions. For these inter-

actions the relaxation of the odd-rank alignments is
defined by I þ 1

2
simultaneous equations while the re-

laxation of the even-rank alignments is specified by a

system of I � 1
2
equations. It is important to note that the

simultaneous evolution of the multipole alignments is

consistent with nonexponential relaxation. This has

largely been ignored in the literature where most inves-

tigations have focused on systems with vanishing higher

rank multipoles for which the relaxation may be ap-
proximately exponential [22]. However, it is evident that

the higher rank multipole alignments cannot be ignored

for large quadrupole interactions.

In order to understand the combined effects of an-

isotropic relaxation and motion the theoretical formal-

ism has been used to calculate central transition 17O

NMR spectra for different systems. The results have

revealed several important details about relaxation of
half-integer quadrupole nuclei. It has been shown that

partially relaxed lineshapes acquired using central

transition inversion-recovery spectroscopy are highly

sensitive to the precise values of the rate constants and

the orientations of the quadrupole tensor. This may be

used to distinguish between different motional models

that would otherwise produce almost identical fully re-

laxed lineshapes. The only limitation is that it is often
possible to define several models for which the partially

relaxed lineshapes are indistinguishable. However, an

eminent advantage is that the number of possible

models is reduced significantly. It is found that slow and

intermediate molecular motion may be identified by the

small relaxation rate and characteristic lineshape effects.

For systems dominated by the quadrupole interaction

the relaxation rate is a decreasing function of the Lar-
mor frequency and an increasing function of the rate

constants. For the shielding interaction there is no sig-

nificant frequency dependence for slow and intermediate

motion. In the case of fast and ultrafast motion the

spectra gradually converge to an almost invariant line-

shape defined by the motionally averaged Hamiltonian.

In order to distinguish between fast and ultrafast mo-

tion it is useful to exploit the fact that any system has a
relaxation maximum. This implies that the relaxation

rate is an increasing function of the rate constants for

fast motion and a decreasing function for ultrafast

motion. The quadrupole relaxation rate is independent

of the Larmor frequency for ultrafast motion and a

decreasing function for fast motion. The shielding re-

laxation rate is an increasing function of the Larmor
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frequency for ultrafast motion and invariant for fast
motion.

As an example the theoretical and experimental

methods developed in this paper have been applied to

characterize the oxygen disorder in the silica (SiO2)

polymorph cristobalite. The results of central transition

spin-echo 17O NMR spectroscopy are insufficient to

determine all the structural and motional details of

cristobalite [40,52]. There are no easily discernible ef-
fects of oxygen motion in the spectra of a-cristobalite
whereas the lineshapes of b-cristobalite are consistent

with either fast or ultrafast motion. This implies that a-
cristobalite is either a static structure or the motion is

sufficiently slow that there are no lineshape effects.

Because the spectra of b-cristobalite are determined by

a motionally averaged quadrupole and shielding inter-

action it is impossible to determine the precise values of
the rate constants. Another complication is that it is

impossible to obtain the value of the quadrupole cou-

pling constant and the orientation of the quadrupole

tensor from the fully relaxed spectra. In order to re-

solve these problems we have applied central transition

inversion-recovery 17O NMR spectroscopy to study the

anisotropic relaxation of the oxygen nuclei. The results

show that the oxygen motion in a-cristobalite is slow
and increases only slowly as a function of temperature.

This is reflected in the small but increasing relaxation

rate and the absence of lineshape effects in the fully

relaxed spectra. The partially relaxed lineshapes of b-
cristobalite are shown to be consistent with ultrafast

motion. This demonstrates that the motion increases by

orders of magnitude at the a–b phase transition. The

ultrafast motion is reflected in the large but decreasing
relaxation rate and the motionally averaged lineshapes.

The partially relaxed lineshapes define the correct ori-

entation of the quadrupole tensor and corresponding

value of the quadrupole coupling constant. The quad-

rupole asymmetry parameter is found to decrease at the

a–b phase transition. This is not the result of motional

averaging but may be attributed to a small structural

modification involving an increase in the Si–O–Si angle.
In order to investigate this model in more detail we

have applied 29Si NMR spectroscopy to study the

structure of cristobalite. The results show that a-cris-
tobalite has an almost invariant structure. However, at

the a–b phase transition the 29Si isotropic chemical

shift decreases slightly indicating an increase in the

Si–O–Si angle.

The experimental and theoretical methods introduced
in this paper provide a general framework for measuring

and characterizing motional disorder in solids. The

approach is based on analyzing the combined effects of

anisotropic motion and relaxation on solid-state central

transition NMR spectra of half-integer quadrupole

nuclei. The relaxation effects extend the accessible

motional range by orders of magnitude and make it

possible to investigate both ultraslow and ultrafast
molecular motion. The additional constraints imposed

by studying partially relaxed spectra improve the accu-

racy of the experiments significantly. Although partially

relaxed spectra may often be simulated using many

different motional models the study of anisotropic re-

laxation reduces the number of possibilities. The tech-

niques are applicable to a variety of physical problems

including transport measurements and studies of an-
isotropic molecular motion in both crystalline and

amorphous solid materials. The results presented for

cristobalite are consistent with the rigid unit mode

model and represent the first experimental measurement

of ultraslow and ultrafast oxygen motion in a solid

framework structure.
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